scholarly journals Validation of Leaf Area Index Measurement System Based on Wireless Sensor Network

Author(s):  
Rongjin Yang ◽  
Lu Liu ◽  
Qiang Liu ◽  
Xiuhong Li ◽  
Lizeyan Yin ◽  
...  

Abstract Accurate measurement of leaf area index (LAI) is important for agricultural analysis such as the estimation of crop yield, which makes its measurement work important. There are mainly two ways to obtain LAI: ground station measurement and remote sensing satellite monitoring. Recently, reliable progress has been made in long-term automatic LAI observation using wireless sensor network (WSN) technology under certain conditions. We developed and designed an LAI measurement system (LAIS) based on a wireless sensor network to select and improve the appropriate algorithm according to the image collected by the sensor, to get a more realistic leaf area index. The corn LAI was continuously observed from May 30 to July 16, 2015. Research on hardware has been published, this paper focuses on improved system algorithm and data verification. By improving the finite length average algorithm, the data validation results are as follows: 1. The slope of the fitting line between LAIS measurement data and the real value is 0.944, and the root means square error (RMSE) is 0.264 (absolute error ~ 0-0.6), which has high consistency with the real value. 2. The measurement error of LAIS is less than LAI2000, although the result of our measurement method will be higher than the actual value, it is due to the influence of weeds on the ground. 3. LAIS data can be used to support the retrieval of remote sensing products. We find a suitable application situation of our LAIS system data, and get our application value as ground monitoring data by the verification with remote sensing product data, which supports its application and promotion in similar research in the future.

2019 ◽  
Vol 11 (3) ◽  
pp. 244 ◽  
Author(s):  
Gaofei Yin ◽  
Aleixandre Verger ◽  
Yonghua Qu ◽  
Wei Zhao ◽  
Baodong Xu ◽  
...  

Many applications, including crop growth and yield monitoring, require accurate long-term time series of leaf area index (LAI) at high spatiotemporal resolution with a quantification of the associated uncertainties. We propose an LAI retrieval approach based on a combination of the LAINet observation system, the Consistent Adjustment of the Climatology to Actual Observations (CACAO) method, and Gaussian process regression (GPR). First, the LAINet wireless sensor network provides temporally continuous field measurements of LAI. Then, the CACAO approach generates synchronous reflectance data at high spatiotemporal resolution (30-m and 8-day) from the fusion of multitemporal MODIS and high spatial resolution Landsat satellite imagery. Finally, the GPR machine learning regression algorithm retrieves the LAI maps and their associated uncertainties. A case study in a cropland site in China showed that the accuracy of LAI retrievals is 0.36 (12.7%) in terms of root mean square error and R2 = 0.88 correlation with ground measurements as evaluated over the entire growing season. This paper demonstrates the potential of the joint use of newly developed software and hardware technologies in deriving concomitant LAI and uncertainty maps with high spatiotemporal resolution. It will contribute to precision agriculture, as well as to the retrieval and validation of LAI products.


2020 ◽  
Vol 12 (20) ◽  
pp. 3304
Author(s):  
Lihong Yu ◽  
Jiali Shang ◽  
Zhiqiang Cheng ◽  
Zebin Gao ◽  
Zixin Wang ◽  
...  

Accurate and continuous monitoring of leaf area index (LAI), a widely-used vegetation structural parameter, is crucial to characterize crop growth conditions and forecast crop yield. Meanwhile, advancements in collecting field LAI measurements have provided strong support for validating remote-sensing-derived LAI. This paper evaluates the performance of LAI retrieval from multi-source, remotely sensed data through comparisons with continuous field LAI measurements. Firstly, field LAI was measured continuously over periods of time in 2018 and 2019 using LAINet, a continuous LAI measurement system deployed using wireless sensor network (WSN) technology, over an agricultural region located at the Heihe watershed at northwestern China. Then, cloud-free images from optical satellite sensors, including Landsat 7 the Enhanced Thematic Mapper Plus (ETM+), Landsat 8 the Operational Land Imager (OLI), and Sentinel-2A/B Multispectral Instrument (MSI), were collected to derive LAI through inversion of the PROSAIL radiation transfer model using a look-up-table (LUT) approach. Finally, field LAI data were used to validate the multi-temporal LAI retrieved from remote-sensing data acquired by different satellite sensors. The results indicate that good accuracy was obtained using different inversion strategies for each sensor, while Green Chlorophyll Index (CIgreen) and a combination of three red-edge bands perform better for Landsat 7/8 and Sentinel-2 LAI inversion, respectively. Furthermore, the estimated LAI has good consistency with in situ measurements at vegetative stage (coefficient of determination R2 = 0.74, and root mean square error RMSE = 0.53 m2 m−2). At the reproductive stage, a significant underestimation was found (R2 = 0.41, and 0.89 m2 m−2 in terms of RMSE). This study suggests that time-series LAI can be retrieved from multi-source satellite data through model inversion, and the LAINet instrument could be used as a low-cost tool to provide continuous field LAI measurements to support LAI retrieval.


2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Kasturi Devi Kanniah ◽  
Chuen Siang Kang ◽  
Sahadev Sharma ◽  
A. Aldrie Amir

Mangrove is classified as an important ecosystem along the shorelines of tropical and subtropical landmasses, which are being degraded at an alarming rate despite numerous international treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century (2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge, and shape complexity, where smaller and isolated mangrove patches were found to be related to the rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS) Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove areas that had not undergone any land cover changes over the years showed an increase from 3.03 to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas (from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects where abundance of solar radiation along the edges of the patches may increase productivity. The impact on GPP due to fragmentation is found to rely on the type of land transformation and patch characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity conservation, in addition to providing economical revenue and supporting human activities.


2018 ◽  
Vol 10 (5) ◽  
pp. 763 ◽  
Author(s):  
Manuel Campos-Taberner ◽  
Francisco García-Haro ◽  
Lorenzo Busetto ◽  
Luigi Ranghetti ◽  
Beatriz Martínez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document