Investigation of the contamination influence on the parameters of gas flow through multi-hole orifice flow meter

Author(s):  
Amra Hasecic ◽  
Jasmina Imamovic ◽  
Sinisa Bikic ◽  
Ejub Dzaferovic
2015 ◽  
Vol 1115 ◽  
pp. 472-475
Author(s):  
Muhammad Abdullah ◽  
Moumen Idres

Orifice meter is a flow measuring device which is widely used in various industrial applications. Although the device gives accurate measurement during steady flow, measurement errors related to square root and sampling errors are unavoidable if pulsations exist. This research investigatesand improves the performance of an orifice plate flow meter under pulsation effects. A simple model for the pulsating flow through an orifice meter is presented. Square root error (SRE) is estimated. Sampling errors (SE) are reduced by proper selection of the averaging time.


2002 ◽  
Vol 2002 (5-1) ◽  
pp. 83-88
Author(s):  
Tatsuya FUNAKI ◽  
Kenji KAWASHIMA ◽  
Toshinori FUJITA ◽  
Toshiharu KAGAWA

MAPAN ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Gunawan ◽  
Harijono A. Tjokronegoro ◽  
Edi Leksono ◽  
Nugraha Nugraha

Author(s):  
Aaron J. Knobloch ◽  
Joell R. Hibshman ◽  
George Wu ◽  
Rich Saia

This study summarizes a fundamental investigation of flow through an array of silicon micromachined rectangular slots. The purpose of the study is to evaluate the effect of entrance pressure, flow area, orifice thickness, slot length, and slot width of the orifice on flow rate. These orifices were fabricated using a simple frontside through wafer DRIE process on a 385 μm thick wafer and wafer bonding to create thicker orifices. The dies were then packaged as part of a TO8 can and flow tested. To complement the results of this experimental work, two simple flow models were developed to predict the effect of geometrical and entrance conditions on the flow rate. These models were based on macroscale assumptions that were not necessarily true in the case of thin orifices. One relationship was based on Pouiselle flow which assumes fully developed flow conditions. Calculation of the entry length required for fully developed flow indicate that in the low Reynolds Number regime (32-550) evaluated, the entry flow development requires 2-8 times the thickness of the thickest orifices used for this study. Therefore, calculations of orifice flow based on a Pouiselle model are an overestimate of the actual measured flow rates. Another model examined typical orifice relationships using head loss at the entrance and exit of the slots did not accurately capture the particular flow rates since it overestimated the expansion or constriction losses. A series of experiments where the pressure was varied between 75 and 1000 Pa were performed. A comparison of the Pouiselle flow solution with experimental results was made which showed that the Pouiselle flow model overpredicts the flow rates and more specifically, the effect of width on the flow rates. The results of these tests were used to develop a transfer function which describes the dependence of flow rate on orifice width, thickness, length, and inlet pressure.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7281
Author(s):  
Adam Tomaszewski ◽  
Tomasz Przybylinski ◽  
Marcin Lackowski

The paper presents the results of the experimental and numerical analysis of a six-hole orifice flow meter. The experiments were performed on humid air in a 100 mm diameter duct. The aim of this research was to investigate the mass flow and pressure drop dependency in an orifice of a predetermined shape and to compare the results obtained with computational formulas recommended in the ISO 5167-2 standard for a single-hole orifice flow meter. The experiments and calculations were performed on several multi-hole orifice geometries with different contraction coefficient in a wide range of Reynolds numbers. The pressure was probed immediately upstream and downstream of the orifice. The flow coefficient determined for the six-hole orifice flow meter investigated was compared with the flow coefficient of conventional single-hole orifice with the same contraction coefficient. The results from computational formulas for single-hole orifice from ISO 5167 are also included in the paper. During some experiments, an obstacle has been introduced in the duct at variable distance upstream from the orifice. The effect of the thus generated velocity field disturbance on the measured pressure drop was then investigated. Numerical simulation of the flow with the presence of the obstacle was also performed and compared with experimental data.


Sign in / Sign up

Export Citation Format

Share Document