High-Frequency Behavior Models of AC Motors

2009 ◽  
Vol 45 (1) ◽  
pp. 133-138 ◽  
Author(s):  
N. Idir ◽  
Y. Weens ◽  
M. Moreau ◽  
J. J. Franchaud
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1397
Author(s):  
Bishwadeep Saha ◽  
Sebastien Fregonese ◽  
Anjan Chakravorty ◽  
Soumya Ranjan Panda ◽  
Thomas Zimmer

From the perspectives of characterized data, calibrated TCAD simulations and compact modeling, we present a deeper investigation of the very high frequency behavior of state-of-the-art sub-THz silicon germanium heterojunction bipolar transistors (SiGe HBTs) fabricated with 55-nm BiCMOS process technology from STMicroelectronics. The TCAD simulation platform is appropriately calibrated with the measurements in order to aid the extraction of a few selected high-frequency (HF) parameters of the state-of-the-art compact model HICUM, which are otherwise difficult to extract from traditionally prepared test-structures. Physics-based strategies of extracting the HF parameters are elaborately presented followed by a sensitivity study to see the effects of the variations of HF parameters on certain frequency-dependent characteristics until 500 GHz. Finally, the deployed HICUM model is evaluated against the measured s-parameters of the investigated SiGe HBT until 500 GHz.


2001 ◽  
Vol 674 ◽  
Author(s):  
M.I. Rosales ◽  
H. Montiel ◽  
R. Valenzuela

ABSTRACTAn investigation of the frequency behavior of polycrystalline ferrites is presented. It is shown that the low frequency dispersion (f < 10 MHz) of permeability is associated with the bulging of pinned domain walls, and has a mixed resonance-relaxation character, closer to the latter. It is also shown that there is a linear relationship between the magnetocrystalline anisotropy constant, K1, and the relaxation frequency. The slope of this correlation depends on the grain size. Such a relationship could allow the determination of this basic parameter from polycrystalline samples.


1931 ◽  
Vol 37 (11) ◽  
pp. 1458-1483 ◽  
Author(s):  
Lewi Tonks

2011 ◽  
Vol 83 (6) ◽  
Author(s):  
Y. J. Zhang ◽  
J. Wu ◽  
P. T. Leung

Sign in / Sign up

Export Citation Format

Share Document