IMPROVED NUMERICAL METHOD FOR COMPUTING INTERNAL IMPEDANCE OF A RECTANGULAR CONDUCTOR AND DISCUSSIONS OF ITS HIGH FREQUENCY BEHAVIOR

2012 ◽  
Vol 23 ◽  
pp. 139-152 ◽  
Author(s):  
Makoto Matsuki ◽  
Akira Matsushima
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1397
Author(s):  
Bishwadeep Saha ◽  
Sebastien Fregonese ◽  
Anjan Chakravorty ◽  
Soumya Ranjan Panda ◽  
Thomas Zimmer

From the perspectives of characterized data, calibrated TCAD simulations and compact modeling, we present a deeper investigation of the very high frequency behavior of state-of-the-art sub-THz silicon germanium heterojunction bipolar transistors (SiGe HBTs) fabricated with 55-nm BiCMOS process technology from STMicroelectronics. The TCAD simulation platform is appropriately calibrated with the measurements in order to aid the extraction of a few selected high-frequency (HF) parameters of the state-of-the-art compact model HICUM, which are otherwise difficult to extract from traditionally prepared test-structures. Physics-based strategies of extracting the HF parameters are elaborately presented followed by a sensitivity study to see the effects of the variations of HF parameters on certain frequency-dependent characteristics until 500 GHz. Finally, the deployed HICUM model is evaluated against the measured s-parameters of the investigated SiGe HBT until 500 GHz.


2001 ◽  
Vol 674 ◽  
Author(s):  
M.I. Rosales ◽  
H. Montiel ◽  
R. Valenzuela

ABSTRACTAn investigation of the frequency behavior of polycrystalline ferrites is presented. It is shown that the low frequency dispersion (f < 10 MHz) of permeability is associated with the bulging of pinned domain walls, and has a mixed resonance-relaxation character, closer to the latter. It is also shown that there is a linear relationship between the magnetocrystalline anisotropy constant, K1, and the relaxation frequency. The slope of this correlation depends on the grain size. Such a relationship could allow the determination of this basic parameter from polycrystalline samples.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Mario Durán ◽  
Jean-Claude Nédélec ◽  
Sebastián Ossandón

An efficient numerical method, using integral equations, is developed to calculate precisely the acoustic eigenfrequencies and their associated eigenvectors, located in a given high frequency interval. It is currently known that the real symmetric matrices are well adapted to numerical treatment. However, we show that this is not the case when using integral representations to determine with high accuracy the spectrum of elliptic, and other related operators. Functions are evaluated only in the boundary of the domain, so very fine discretizations may be chosen to obtain high eigenfrequencies. We discuss the stability and convergence of the proposed method. Finally we show some examples.


2009 ◽  
Vol 45 (1) ◽  
pp. 133-138 ◽  
Author(s):  
N. Idir ◽  
Y. Weens ◽  
M. Moreau ◽  
J. J. Franchaud

1931 ◽  
Vol 37 (11) ◽  
pp. 1458-1483 ◽  
Author(s):  
Lewi Tonks

2011 ◽  
Vol 83 (6) ◽  
Author(s):  
Y. J. Zhang ◽  
J. Wu ◽  
P. T. Leung

Sign in / Sign up

Export Citation Format

Share Document