scholarly journals Use of Half Metallic Heusler Alloys in CoFeB/MgO/Heusler Alloy Tunnel Junctions

2013 ◽  
Vol 49 (7) ◽  
pp. 4379-4382 ◽  
Author(s):  
P. J. Chen ◽  
G. Feng ◽  
R. D. Shull
2017 ◽  
pp. 31-36
Author(s):  
Prakash Sharma ◽  
Gopi Chandra Kaphle

Heusler alloys have been of great interest because of their application in the field of modern technological word. Electronic and magnetic properties of Co, Mn, Si and the Heusler alloy Co2MnSi have been studied using Density functional theory based Tight Binding Linear Muffin Tin Orbital with Atomic Sphere Approximation (TB-LMTO-ASA) approach. From the calculation lattice parameter of optimized structure of Co, Mn, Si and Co2MnSi are found to be 2.52A0 , 3.49A0 , 5.50A0 , 5.53A0 respectively. Band structure calculations show that Co and Mn are metallic, Si as semi-conducting while the Heusler alloy Co2MnSi as half-metallic in nature with band gap 0.29eV. The charge density plot indicates major bonds in Co2MnSi are ionic in nature. Magnetic property has been studied using the density of states (DOS), indicating that Co and Co2MnSi are magnetic with magnetic moment 2.85μB and 4.91μB respectively. The contribution of orbitals in band, DOS and magnetic moment are due to d-orbitals of Co and Mn and little from s and p-orbital of Si in Co2MnSi.The Himalayan Physics Vol. 6 & 7, April 2017 (31-36)


Author(s):  
M. Oogane ◽  
S. Mizukami

Some full-Heusler alloys, such as Co 2 MnSi and Co 2 MnGe, are expected to be half-metallic ferromagnetic material, which has complete spin polarization. They are the most promising materials for realizing half-metallicity at room temperature owing to their high Curie temperature. We demonstrate a huge tunnel magnetoresistance effect in a magnetic tunnel junction using a Co 2 MnSi Heusler alloy electrode. This result proves high spin polarization of the Heusler alloy. We also demonstrate a small magnetic damping constant in Co 2 FeAl epitaxial film. The very high spin polarization and small magnetic constant of Heusler alloys will be a great advantage for future spintronic device applications.


2007 ◽  
Vol 19 (36) ◽  
pp. 365228 ◽  
Author(s):  
Yoshio Miura ◽  
Hirohisa Uchida ◽  
Yoshihiro Oba ◽  
Kazutaka Nagao ◽  
Masafumi Shirai

2011 ◽  
Vol 470 ◽  
pp. 54-59
Author(s):  
Hiroyoshi Itoh ◽  
Syuta Honda ◽  
Junichiro Inoue

The electronic structures of Co-based Heusler alloys with nonstoichiometric atomic compositions as well as those at the interface of semiconductor junctions are investigated using first principles band calculations. It is shown that the electronic structure of a Co-based Heusler alloy is half-metallic, even for nonstoichiometric but Co-rich compositions, whereas the half-metallicity is lost for Co-poor compositions. It is also shown that magnetic moments at the interface of Co2MnSi/ Si junctions are sensitive to the growth direction and interface structure of the junctions. Efficient spin-injection into Si can be achieved by using a (111)-oriented Co-rich Heusler alloy and controlling the layer-by-layer stacking sequence at the interface.


Materia Japan ◽  
2005 ◽  
Vol 44 (8) ◽  
pp. 654-660
Author(s):  
Koichiro Inomata ◽  
Susumu Okamura ◽  
Nobuki Tezuka

2019 ◽  
Vol 5 (12) ◽  
pp. eaaw9337 ◽  
Author(s):  
Zhenchao Wen ◽  
Zhiyong Qiu ◽  
Sebastian Tölle ◽  
Cosimo Gorini ◽  
Takeshi Seki ◽  
...  

Half-metallic Heusler alloys are attracting considerable attention because of their unique half-metallic band structures, which exhibit high spin polarization and yield huge magnetoresistance ratios. Besides serving as ferromagnetic electrodes, Heusler alloys also have the potential to host spin-charge conversion. Here, we report on the spin-charge conversion effect in the prototypical Heusler alloy NiMnSb. An unusual charge signal was observed with a sign change at low temperature, which can be manipulated by film thickness and ordering structure. It is found that the spin-charge conversion has two contributions. First, the interfacial contribution causes a negative voltage signal, which is almost constant versus temperature. The second contribution is temperature dependent because it is dominated by minority states due to thermally excited magnons in the bulk part of the film. This work provides a pathway for the manipulation of spin-charge conversion in ferromagnetic metals by interface-bulk engineering for spintronic devices.


2017 ◽  
Vol 4 (1) ◽  
pp. 60
Author(s):  
Prakash Sharma ◽  
Gopi Chandra Kaphle

<p class="Default">Heusler alloys have been of great interest because of their application in the field of modern technological applications. Electronic and magnetic properties of Co, Mn, Si and the Heusler alloy Co<sub>2</sub>MnSi have been studied using Density functional theory based Tight Binding Linear Muffin Tin Orbital with Atomic Sphere Approximation (TB-LMTO-ASA) approach. From the calculation lattice parameter of optimized structure of Co, Mn, Si and Co<sub>2</sub>MnSi are found to be 2.52Å, 3.49Å, 5.50Å, 5.53Å respectively. Band structure calculations show that Co and Mn are metallic, Si as semi-conducting while the Heusler alloy Co<sub>2</sub>MnSi as half-metallic in nature with band gap 0.29eV. The charge density plot indicates major bonds in Co<sub>2</sub>MnSi are ionic in nature. Magnetic property has been studied using the density of states (DOS), indicating that Co and Co2MnSi are magnetic with magnetic moments 2.85μ<sub>B</sub> and 4.91μ<sub>B</sub> respectively. The contribution of orbital in band structure, DOS and magnetic moments are due to d-orbital of Co and Mn and little from s and p-orbital of Si in Co<sub>2</sub>MnSi alloy.</p><p><strong>Journal of Nepal Physical Society</strong><em><br /></em>Volume 4, Issue 1, February 2017, Page: 60-66</p>


Sign in / Sign up

Export Citation Format

Share Document