Track--Stair Interaction Analysis and Online Tipover Prediction for a Self-Reconfigurable Tracked Mobile Robot Climbing Stairs

2009 ◽  
Vol 14 (5) ◽  
pp. 528-538 ◽  
Author(s):  
Yugang Liu ◽  
Guangjun Liu
2019 ◽  
Vol 40 (1) ◽  
pp. 143-154
Author(s):  
Chengguo Zong ◽  
Zhijian Ji ◽  
Haisheng Yu

Purpose This paper aims to provide a theoretical principle for the stability control of robot climbing stairs, autonomously based on human–robot interaction. Through this research, tracked mobile robots with human-robot interaction will be extensively used in rescue in disaster, exploration on planetary, fighting in battle, and searching for survivors in collapsed buildings. Design/methodology/approach This paper introduces the tracked mobile robot, based on human–robot interaction, and its six moving postures. The dynamic process of climbing stairs is analyzed, and the dynamic model of the robot is proposed. The dynamic stability criterion is derived when the tracked mobile robot contacts the stairs steps in one, two and more points. A further conduction of simulation on the relationship of the traction force and bearing force vs the velocity and acceleration in the three cases was carried out. Findings This paper explains that the tracked mobile robot, based on human–robot interaction, can stably climb stairs so long as the velocity and acceleration satisfy the dynamic stability criterion as noted above. In addition, the experiment tests the correctness of dynamic stability analysis when the tracked mobile robot contacts the stair steps in one, two or more points. Originality/value This paper provides the mechanical structure and working principle of the tracked mobile robot based on human–robot interaction and proposes an identification method of dynamic stability criterion when the robot contacts the stairs steps in one, two and more points.


2019 ◽  
pp. 41-48
Author(s):  
Yan Guojun ◽  
Oleksiy Kozlov ◽  
Oleksandr Gerasin ◽  
Galyna Kondratenko

The article renders the special features of the design of a tracked mobile robot (MR) for moving over inclined ferromagnetic surfaces while performing specified technological operations. There is conducted a synthesis of the functional structure and selective technological parameters (such as control coordinates) of the computerized monitoring and control system (CMCS) intended for use with this MR. Application of the CMCS with the proposed functional structure allows substantially increasing the accuracy of the MR monitoring and control, which in turn provides for a considerable enhancement in the quality and economic efficiency of the operations on processing of large ferromagnetic surfaces.


Sign in / Sign up

Export Citation Format

Share Document