Dual-Stage Actuator Control Design Using a Doubly Coprime Factorization Approach

2010 ◽  
Vol 15 (3) ◽  
pp. 339-348 ◽  
Author(s):  
Jinchuan Zheng ◽  
Weizhou Su ◽  
Minyue Fu
Author(s):  
Seung-Hi Lee

This paper presents a discrete-time design of a dual-stage actuator control system with sliding mode for computer disk drives. A state estimator based discrete-time boundary layer sliding mode control scheme is developed for a dual-stage actuator, which consists of a voice coil motor and a microactuator. Considering dominant microactuator flexible mode dynamics and the interaction between the two actuators, an optimal sliding hyperplane is designed to maximize their cooperation so as to attain desired responses. An application example demonstrates the utility of the proposed sliding mode dual-stage actuator control scheme for track-seek in the microactuator range, settle, and track-follow.


Author(s):  
James Peyton-Jones ◽  
Aleksandra Mitrovic ◽  
G. M. Clayton

Abstract Dual-stage actuators, which combine two actuators with different characteristics, have gained interest due to their large-range, high-resolution positioning capabilities. Control of such systems is challenging because it requires balancing the relative contributions of the individual actuators in terms of speed, range and precision. The most common approach is to allocate effort to the actuators based on frequency but this can lead to misallocation in the case of low-frequency short-range trajectories. In this paper, the problem of trajectory allocation in dual-stage actuator systems is addressed using a recently developed range-based filter. The theoretical basis of the range-based filter is rigorously derived for the first time and insights regarding its use, specifically its reinterpretation as a speed-based filter, and its range-frequency response characteristics are presented. The new analysis not only explains the behavior of the filter clearly, but it provides a more robust strategy for incorporating range constraints in filter design for different desired trajectories.


2017 ◽  
Vol 29 (6) ◽  
pp. 1065-1072 ◽  
Author(s):  
Aihui Wang ◽  
Zhengxiang Ma ◽  
Shengjun Wen ◽  
◽  
◽  
...  

In this paper, an operator-based robust perfect control for nonlinear semiconductor refrigeration device with uncertainties and perturbation is considered. For the research about the properties of the semiconductor refrigeration, an aluminum plate with Peltier device is very representative. Therefore, the perfect tracking control performance of semiconductor refrigeration can be investigated by using this aluminum plate with Peltier device. Moreover, the operator based robust right coprime factorization (RRCF) approach is convenient in analysis and designing control system of nonlinear plant with uncertainties and perturbation. Based on the above reasons, an operator-based robust tracking control design for nonlinear semiconductor refrigeration device with uncertainties and perturbation is investigated by using an operator-based robust right coprime factorization approach, where the operator-based disturbance and state observers based on nominal plant properties are designed to compensate the effect of uncertainties and perturbation. A realizable operator controller is designed to improve the control performance and to realize the perfect tracking. The sufficient condition of robust stability for the designed system is derived. The robust stability condition ensured that the output tracking performance is realized. Finally, the effectiveness of the proposed design scheme was illustrated by the simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document