Model-Based and Data-Driven Fault Detection Performance for a Small UAV

2013 ◽  
Vol 18 (4) ◽  
pp. 1300-1309 ◽  
Author(s):  
Paul Freeman ◽  
Rohit Pandita ◽  
Nisheeth Srivastava ◽  
Gary J. Balas
Author(s):  
Karthik Kappaganthu ◽  
C. Nataraj

This paper proposes a novel technique combining datadriven and model-based techniques to significantly improve the performance in bearing fault diagnostics. Features that provide best classification performance for the given data are selected from a combined set of data driven and model based features. Some of the common data driven techniques from time, frequency and time-frequency domain are considered. For model based feature extraction, recently developed cross-sample entropy is used. The ranking and performance of each of these feature sets are studied, when used independently and when used together. Mutual information based technique is used for ranking and selection of the optimal feature set. Using this method, the contribution to performance and redundancy of each of the data driven features and model based features can be studied. This method can be used to design an effective diagnostic system for bearing fault detection.


2018 ◽  
Vol 32 (12) ◽  
pp. e3068 ◽  
Author(s):  
Majdi Mansouri ◽  
Mohamed Faouzi Harkat ◽  
Sin Yin Teh ◽  
Ayman Al-khazraji ◽  
Hazem Nounou ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Hamed Khorasgani ◽  
Ahmed Farahat ◽  
Chetan Gupta

Traditionally, fault detection and isolation community have used system dynamic equations to generate diagnosers and to analyze detectability and isolability of the dynamic systems. Model-based fault detection and isolation methods use system model to generate a set of residuals as the bases for fault detection and isolation. However, in many complex systems it is not feasible to develop highly accurate models for the systems and to keep the models updated during the system lifetime. Recently, data- driven solutions have received an immense attention in the industrial applications for several practical reasons. First, these methods do not require the initial investment and expertise for developing accurate models. Moreover, it is possible to update and retrain the diagnosers as the system or the environment change over time automatically. Finally, unlike the model-based methods it is straightforward to combine time series measurements such as pressure and voltage with other sources of information such as system operating hours to achieve a higher accuracy. In this paper, we extend the traditional model- based fault detection and isolation concepts such as residuals, and detectable and isolable faults to the data-driven domain. We then propose an algorithm to automatically generate residuals from the normal operating data. We compare the performance of our proposed approach with traditional model-based methods through a case study.


2008 ◽  
Vol 23 (2) ◽  
pp. 659-668 ◽  
Author(s):  
P.F. Odgaard ◽  
Bao Lin ◽  
S.B. Jorgensen

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2085
Author(s):  
Xue-Bo Jin ◽  
Ruben Jonhson Robert RobertJeremiah ◽  
Ting-Li Su ◽  
Yu-Ting Bai ◽  
Jian-Lei Kong

State estimation is widely used in various automated systems, including IoT systems, unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous and processed in real time. With modern systems’ development, sensors can obtain more and more signals and store them. Therefore, how to use these measurement big data to improve the performance of state estimation has become a hot research issue in this field. This paper reviews the development of state estimation and future development trends. First, we review the model-based state estimation methods, including the Kalman filter, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. Particle filters and Gaussian mixture filters that can handle mixed Gaussian noise are discussed, too. These methods have high requirements for models, while it is not easy to obtain accurate system models in practice. The emergence of robust filters, the interacting multiple model (IMM), and adaptive filters are also mentioned here. Secondly, the current research status of data-driven state estimation methods is introduced based on network learning. Finally, the main research results for hybrid filters obtained in recent years are summarized and discussed, which combine model-based methods and data-driven methods. This paper is based on state estimation research results and provides a more detailed overview of model-driven, data-driven, and hybrid-driven approaches. The main algorithm of each method is provided so that beginners can have a clearer understanding. Additionally, it discusses the future development trends for researchers in state estimation.


Sign in / Sign up

Export Citation Format

Share Document