Formation Tracking of Multiagent Systems With Time-Varying Actuator Faults and Its Application to Task-Space Cooperative Tracking of Manipulators

Author(s):  
Zhi Feng ◽  
Guoqiang Hu
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ran Zhen ◽  
Yating Jin ◽  
Xiaojing Wu ◽  
Xueli Wu ◽  
Xuan Lv

This paper investigates fault-tolerant time-varying formation tracking control problems for unmanned aerial vehicle (UAV) swarm systems with switching topologies. Actuator faults such as loss of effectiveness and bias fault are mainly considered. Firstly, based on graph theory, an adaptive fault-tolerant time-varying formation tracking control protocol is constructed with adaptive updating parameters and the relative information of the neighboring UAVs, and the feasibility condition for formation tracking is given. The control protocol does not depend on the information of the actuator fault boundary by using adaptive technology. Then, by constructing a reasonable Lyapunov function and solving the algebraic Riccati equation, the stability of the designed controller is proved. For UAV swarm systems with switching topologies and actuator faults, the formation tracking control protocol designed is adopted to enable the followers form the desired time-varying formation and track the leader’s status at the same time. Finally, the simulation examples are given to illustrate the effectiveness of the theoretical results.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 14 ◽  
Author(s):  
Hongjun Wang ◽  
Zhuoqun Zhao ◽  
Tao Li

This paper investigates the problem of the task-space synchronization control for networked Euler-Lagrange systems. In the considered systems, there are time-varying delays existing in the networking links and every subsystem contains uncertainties in both kinematics and dynamics. By adding new time-varying coupling gains, the negative effects caused by time-varying delays are eliminated. Moreover, to address the difficulties of parametric calibration, an adaptively synchronous protocol and adaptive laws are designed to online estimate kinematics and dynamic uncertainties. Through a Lyapunov candidate and a Lyapunov-Krasovskii functional, the asymptotic convergences of tracking errors and synchronous errors are rigorously proved. The simulation results demonstrate the proposed protocol guaranteeing the cooperative tracking control of the uncalibrated networked Euler-Lagrange systems in the existence of time-varying delays.


Sign in / Sign up

Export Citation Format

Share Document