scholarly journals Deep Level Transient Spectroscopy of High-Purity Germanium Diodes/Detectors

1979 ◽  
Vol 26 (1) ◽  
pp. 265-270 ◽  
Author(s):  
Eugene E. Haller ◽  
Pearl P. Li ◽  
G. Scott Hubbard ◽  
William L. Hansen
1982 ◽  
Vol 14 ◽  
Author(s):  
P. H. Campbell ◽  
O. Aina ◽  
B. J. Baliga ◽  
R. Ehle

ABSTRACTHigh temperature annealing of Si 3 N4 and SiO2 capped high purity LPE GaAs is shown to result in a reduction in the surface carrier concentration by about an order of magnitude. Au Schottky contacts made on the annealed samples were found to have severely degraded breakdown characteristics. Using deep level transient spectroscopy, deep levels at EC–.58eV, EC–.785eV were detected in the SiO2, capped samples and EC–.62eV, EC–.728eV in the Si3N4 capped Samples while none was detected in the unannealed samples.The electrical degradations are explained in terms of compensation mechanisns and depletion layer recombination-generation currents due to the deep levels.


Author(s):  
Johan Lauwaert

Abstract Very often Deep Level Transient Spectroscopy (DLTS) specimens deviate from ideal textbook examples making the interpretation of spectra a huge challenge. This challenge introduces inaccurate estimates of the emission signatures and the lack of appropriate estimates for the concentrations of the observed trap levels. In this work it is shown with the example of high-purity germanium that Technology computer aided design including symbolic differentiation provides the necessary numerical stability over a wide temperature range to model DLTS spectra. Moreover this high-purity germanium is a quasi intrinsic semiconductor for which it is well-known that the original small signal theory can introduce strong errors. It is furthermore shown that the parasitic impact of fractional filling and high resistivity material can be modelled and that these modelled spectra can in the future assist the interpretation of experimental results.


2018 ◽  
Vol 924 ◽  
pp. 253-256 ◽  
Author(s):  
Giovanni Alfieri ◽  
Lukas Kranz ◽  
Lars Knoll ◽  
Vinoth Kumar Sundaramoorthy

The electrical characterization of high-purity semi-insulating 4H-SiC is carried out by means of current deep level transient spectroscopy (I-DLTS). Measurements are performed by employing either an electrical or optical pulse (below/above bandgap). The study performed on as-grown material, either annealed or oxidized, reveals the presence of six levels with ionization energies in the 0.4-1.3 eV range.


1991 ◽  
Vol 223 ◽  
Author(s):  
A. Vaseashta ◽  
L. C. Burton

ABSTRACTKinetics of persistent photoconductivity, photoquenching, and thermal and optical recovery observed in low energy Ar+ bombarded on (100) GaAs surfaces have been investigated. Rate and transport equations for these processes were derived and simulated employing transport parameters, trap locations and densities determined by deep level transient spectroscopy. Excellent correlation was obtained between the results of preliminary simulation and the experimentally observed values. The exponential decay of persistent photoconductivity response curve was determined to be due to metastable electron traps with longer lifetime and is consistent with an earlier proposed model.


2002 ◽  
Vol 719 ◽  
Author(s):  
Masashi Kato ◽  
Masaya Ichimura ◽  
Eisuke Arai ◽  
Shigehiro Nishino

AbstractEpitaxial layers of 4H-SiC are grown on (0001) substrates inclined toward <1120> and <1100> directions. Defects in these films are characterized by deep level transient spectroscopy (DLTS) in order to clarify the dependence of concentrations and activation energies on substrate inclination. DLTS results show no such dependence on substrate inclination but show thickness dependence of the concentration.


Author(s):  
N. Chinone ◽  
Y. Cho ◽  
R. Kosugi ◽  
Y. Tanaka ◽  
S. Harada ◽  
...  

Abstract A new technique for local deep level transient spectroscopy (DLTS) imaging using super-higher-order scanning nonlinear dielectric microscopy is proposed. Using this technique. SiCVSiC structure samples with different post oxidation annealing conditions were measured. We observed that the local DLTS signal decreases with post oxidation annealing (POA), which agrees with the well-known phenomena that POA reduces trap density. Furthermore, obtained local DLTS images had dark and bright areas, which is considered to show the trap distribution at/near SiCVSiC interface.


Sign in / Sign up

Export Citation Format

Share Document