Persistent Photoconductivity And Thermal Recovery Kinetics Of Low Energy Ar + Bombarded GaAs

1991 ◽  
Vol 223 ◽  
Author(s):  
A. Vaseashta ◽  
L. C. Burton

ABSTRACTKinetics of persistent photoconductivity, photoquenching, and thermal and optical recovery observed in low energy Ar+ bombarded on (100) GaAs surfaces have been investigated. Rate and transport equations for these processes were derived and simulated employing transport parameters, trap locations and densities determined by deep level transient spectroscopy. Excellent correlation was obtained between the results of preliminary simulation and the experimentally observed values. The exponential decay of persistent photoconductivity response curve was determined to be due to metastable electron traps with longer lifetime and is consistent with an earlier proposed model.

2020 ◽  
Vol 1004 ◽  
pp. 331-336
Author(s):  
Giovanni Alfieri ◽  
Lukas Kranz ◽  
Andrei Mihaila

SiC has currently attracted the interest of the scientific community for qubit applications. Despite the importance given to the properties of color centers in high-purity semi-insulating SiC, little is known on the electronic properties of defects in this material. In our study, we investigated the presence of electrically active levels in vanadium-doped substrates. Current mode deep level transient spectroscopy, carried out in the dark and under illumination, together with 1-D simulations showed the presence of two electrically active levels, one associated to a majority carrier trap and the other one to a minority carrier trap. The nature of the detected defects has been discussed in the light of the characterization performed on low-energy electron irradiated substrates and previous results found in the literature.


2013 ◽  
Vol 740-742 ◽  
pp. 373-376 ◽  
Author(s):  
Kazuki Yoshihara ◽  
Masashi Kato ◽  
Masaya Ichimura ◽  
Tomoaki Hatayama ◽  
Takeshi Ohshima

We have characterized deep levels in as-grown and electron irradiated p-type 4H-SiC epitaxial layers by the current deep-level transient spectroscopy (I-DLTS) method. A part of the samples were irradiated with electrons in order to introduce defects. As a result, we found that electron irradiation to p-type 4H-SiC created complex defects including carbon vacancy or interstitial. Moreover, we found that observed deep levels are different between before and after annealing, and thus annealing may change structures of defects.


1995 ◽  
Vol 378 ◽  
Author(s):  
E. ö. Sveinbjörnsson ◽  
S. Kristjansson ◽  
O. Engström ◽  
H. P. Gislason

AbstractWe report studies of passivation of the gold center in silicon by hydrogen and lithium using deep level transient spectroscopy (DLTS), capacitance voltage (CV) profiling and secondary ion mass spectroscopy (SIMS). Both lithium and hydrogen are able to remove the electrical activity of the gold center from the silicon band gap but the passivation mechanisms are different. In the case of lithium the passivation is most likely due to a Coulomb attraction between lithium donors Li+ and gold acceptors Au−. No complex formation is observed between Li+ and Au0. In contrast, hydrogen is able to passivate the gold center without the need of opposite charge states of the species involved. Two Au-H complexes are observed, one (G) electrically active, and another (PA) passive. Based on the annealing kinetics of these complexes we propose that the active complex is a Au-H pair and that the passive complex contains two H atoms (Au-H2).


2021 ◽  
Vol 36 (5) ◽  
pp. 055015
Author(s):  
Jiaxiang Chen ◽  
Haoxun Luo ◽  
HaoLan Qu ◽  
Min Zhu ◽  
Haowen Guo ◽  
...  

1987 ◽  
Vol 104 ◽  
Author(s):  
John W. Farmer ◽  
Harold P. Hjalmarson ◽  
G. A. Samara

ABSTRACTPressure dependent Deep Level Transient Spectroscopy (DLTS) experiments are used to measure the properties of the deep donors (DX-centers) responsible for the persistent photoconductivity effect in Si-doped AlGaAs. The sample dependence of the DLTS spectra shows evidence for a defect complex involved in the DX-center.


2009 ◽  
Vol 105 (1) ◽  
pp. 014501 ◽  
Author(s):  
Vl. Kolkovsky ◽  
V Privitera ◽  
A. Nylandsted Larsen

1991 ◽  
Vol 223 ◽  
Author(s):  
K. Srikanth ◽  
J. Shenal ◽  
S. Ashok

ABSTRACTHigh-energy hydrogen ion (proton) implantation is used in Si for creating defects, while low-energy H is known for passivation of a variety of defects and impurities. We have carried out a study of low-energy (<0.4 keV) H passivation of defects produced by 100 keV H implantation. Both Schottky barrier transport and deep level transient spectroscopy measurements give evidence for self-passivation of defects produced by H.


1989 ◽  
Vol 163 ◽  
Author(s):  
Bouchaib Hartiti ◽  
Wolfgang Eichhammer ◽  
Jean-Claude Muller ◽  
Paul Siffert

AbstractWe show in this study that RTP-induced defects analysed by Deep Level Transient Spectroscopy (DLTS) are related to residual impurities present in as-grown silicon wafers. For one particular material an activation of a specific residual metallic impurity was observed in the temperature range 800 - 1000°C. This impurity can be returned to an electrically inactive precipitated form by classical thermal annealing (CTA) with a slow cooling rate or neutralized by means of low-energy hydrogen ion implantation.


Sign in / Sign up

Export Citation Format

Share Document