Beam Stop for Electron Accelerator Beam Characterisation

2009 ◽  
Vol 56 (4) ◽  
pp. 2330-2335
Author(s):  
Greg Roach ◽  
Vic Sharp ◽  
James Tickner ◽  
Josef Uher
Author(s):  
Wah Chi

Resolution and contrast are the important factors to determine the feasibility of imaging single heavy atoms on a thin substrate in an electron microscope. The present report compares the atom image characteristics in different modes of fixed beam dark field microscopy including the ideal beam stop (IBS), a wire beam stop (WBS), tilted illumination (Tl) and a displaced aperture (DA). Image contrast between one Hg and a column of linearly aligned carbon atoms (representing the substrate), are also discussed. The assumptions in the present calculations are perfectly coherent illumination, atom object is represented by spherically symmetric potential derived from Relativistic Hartree Fock Slater wave functions, phase grating approximation is used to evaluate the complex scattering amplitude, inelastic scattering is ignored, phase distortion is solely due to defocus and spherical abberation, and total elastic scattering cross section is evaluated by the Optical Theorem. The atom image intensities are presented in a Z-modulation display, and the details of calculation are described elsewhere.


Author(s):  
A. Strojnik ◽  
J.W. Scholl ◽  
V. Bevc

The electron accelerator, as inserted between the electron source (injector) and the imaging column of the HVEM, is usually a strong lens and should be optimized in order to ensure high brightness over a wide range of accelerating voltages and illuminating conditions. This is especially true in the case of the STEM where the brightness directly determines the highest resolution attainable. In the past, the optical behavior of accelerators was usually determined for a particular configuration. During the development of the accelerator for the Arizona 1 MEV STEM, systematic investigation was made of the major optical properties for a variety of electrode configurations, number of stages N, accelerating voltages, 1 and 10 MEV, and a range of injection voltages ϕ0 = 1, 3, 10, 30, 100, 300 kV).


1987 ◽  
Vol 48 (C9) ◽  
pp. C9-95-C9-98
Author(s):  
W. LOTZ ◽  
H. GENZ ◽  
A. RICHTER ◽  
W. KNÜPFER ◽  
J. P.F. SELLSCHOP

2019 ◽  
Vol 2019 (4) ◽  
pp. 142-152
Author(s):  
Elena Aleksandrovna Onischuk ◽  
Yurij Aleksandrovich Kurachenko ◽  
Evgenij Sergeevich Matusevich

Author(s):  
A. Curcio ◽  
M. Bergamaschi ◽  
R. Corsini ◽  
D. Gamba ◽  
W. Farabolini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document