A Multiple Objective Evolutionary Approach for the Design and Selection of Load Control Strategies

2004 ◽  
Vol 19 (2) ◽  
pp. 1173-1180 ◽  
Author(s):  
A. Gomes ◽  
C.H. Antunes ◽  
A.G. Martins
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3011
Author(s):  
Paweł Latosiński ◽  
Andrzej Bartoszewicz

Sliding mode control strategies are well known for ensuring robustness of the system with respect to disturbance and model uncertainties. For continuous-time plants, they achieve this property by confining the system state to a particular hyperplane in the state space. Contrary to this, discrete-time sliding mode control (DSMC) strategies only drive the system representative point to a certain vicinity of that hyperplane. In established literature on DSMC, the width of this vicinity has always been strictly greater than zero in the presence of uncertainties. Thus, ideal sliding motion was considered impossible for discrete-time systems. In this paper, a new approach to DSMC design is presented with the aim of driving the system representative point exactly onto the sliding hyperplane even in the presence of uncertainties. As a result, the quasi-sliding mode band width is effectively reduced to zero and ideal discrete-time sliding motion is ensured. This is achieved with the proper selection of the sliding hyperplane, using the unique properties of relative degree two sliding variables. It is further demonstrated that, even in cases where selection of a relative degree two sliding variable is impossible, one can use the proposed technique to significantly reduce the quasi-sliding mode band width.


Author(s):  
Gundula B. Runge ◽  
Al Ferri ◽  
Bonnie Ferri

This paper considers an anytime strategy to implement controllers that react to changing computational resources. The anytime controllers developed in this paper are suitable for cases when the time scale of switching is in the order of the task execution time, that is, on the time scale found commonly with sporadically missed deadlines. This paper extends the prior work by developing frequency-weighted anytime controllers. The selection of the weighting function is driven by the expectation of the situations that would require anytime operation. For example, if the anytime operation is due to occasional and isolated missed deadlines, then the weighting on high frequencies should be larger than that for low frequencies. Low frequency components will have a smaller change over one sample time, so failing to update these components for one sample period will have less effect than with the high frequency components. An example will be included that applies the anytime control strategy to a model of a DC motor with deadzone and saturation nonlinearities.


Author(s):  
Tae Won Song ◽  
Jeong L. Sohn ◽  
Tong Seop Kim ◽  
Sung Tack Ro

To investigate the possible applications of the SOFC/MGT hybrid system to large electric power generations, a study for the kW-class hybrid power system conducted in our group is extended to the MW-class hybrid system in this study. Because of the matured technology of the gas turbine and commercial availability in the market, it is reasonable to construct a hybrid system with the selection of a gas turbine as an off-the-shelf item. For this purpose, the performance analysis is conducted to find out the optimal power size of the hybrid system based on a commercially available gas turbine. The optimal power size has to be selected by considering specifications of a selected gas turbine which limit the performance of the hybrid system. Also, the cell temperature of the SOFC is another limiting parameter to be considered in the selection of the optimal power size. Because of different system configuration of the hybrid system, the control strategies for the part-load operation of the MW-class hybrid system are quite different from the kW-class case. Also, it is necessary to consider that the control of supplied air to the MW-class gas turbine is typically done by the variable inlet guide vane located in front of the compressor inlet, instead of the control of variable rotational speed of the kW-class micro gas turbine. Performance characteristics at part-load operating conditions with different kinds of control strategies of supplied fuel and air to the hybrid system are investigated in this study.


2013 ◽  
Vol 145 (3) ◽  
pp. 273-282 ◽  
Author(s):  
Paola A. Caicedo ◽  
Olga L. Barón ◽  
Mauricio Pérez ◽  
Neal Alexander ◽  
Carl Lowenberger ◽  
...  

AbstractThe vector competence (VC) of Aedes aegypti (Linnaeus) (Diptera: Culicidae) varies geographically and is affected by both genetic and environmental factors. Understanding the molecular mechanisms that influence VC may help develop novel control strategies. The selection of susceptible and refractory strains is the first step in this process. We collected immature A. aegypti in the field and established strains that were susceptible and refractory to Dengue-2 virus by isofamily selection through several generations. Infection was detected by immunofluorescence of head or midgut tissues to determine infection barriers and the % of VC by tissue. We selected three strains: Susceptible (Cali-S) (96.4% susceptible at F19), Refractory with a midgut escape barrier (Cali-MEB) (44.1% refractory at F15), and Refractory with a midgut infection barrier (Cali-MIB) (40% refractory at F16). The effects of the infection were measured using Kaplan–Meier survival rates over the first seven generations. All selected strains showed a similar decrease in survival and in the number of eggs laid/female through the seven generations, suggesting that changes were a result of the selection process rather than the virus infection. The results of this study suggest that VC is associated with multiple genes, which have additive effects on susceptibility.


Sign in / Sign up

Export Citation Format

Share Document