Electric Energy and Power Consumption by Light-Duty Plug-In Electric Vehicles

2011 ◽  
Vol 26 (2) ◽  
pp. 738-746 ◽  
Author(s):  
Di Wu ◽  
Dionysios C. Aliprantis ◽  
Konstantina Gkritza
2015 ◽  
Vol 77 (21) ◽  
Author(s):  
Jazli Firdaus Jamil ◽  
Mohd Azman Abdullah ◽  
Norreffendy Tamaldin ◽  
Ahmed Esmael Mohan

The world is demanding for alternative way of energy consumption for vehicle usage. The energy efficient vehicle (EEV) is one of the advancement for future land transportation that known as hybrid and electric vehicles nowadays. The vehicles use different energy other than fuel which is electric energy. This paper emphasizes the development of electromagnetic energy regenerative suspension system (EReSS) as a system that harvests energy from the vibration of vehicle suspension system. The harvested energy is converted to electrical energy for vehicle usage. A prototype of electromagnetic EReSS is fabricated and laboratory experimentation on test rig is conducted to test the voltage output. It is observed that the EReSS can harvest the wasted energy from the vibration and produce sufficient electric energy for the vehicle electrical and electronic usage. The number of windings of the coil and diameter of the coil affect the voltage output of the EReSS. The voltage output of the EReSS can be optimized by setting up the parameters. As the EReSS is proven to harvest energy, it can be used on hybrid and electric vehicle to improve the efficiency of the vehicle and reduce the fuel consumption.


Author(s):  
Zhila Pirmoradi ◽  
G. Gary Wang

Plug-in Hybrid Electric Vehicles (PHEVs) bear great promises for increasing fuel economy and decreasing greenhouse gas emissions by the use of advanced battery technologies and green energy resources. The design of a PHEV highly depends on several factors such as the selected powertrain configuration, control strategy, sizes of drivetrain components, expected range for propulsion purely by electric energy, known as AER, and the assumed driving conditions. Accordingly, design of PHEV powertrains for diverse customer segments requires thorough consideration of the market needs and the specific performance expectations of each segment. From the manufacturing perspective, these parameters provide the opportunity of mass customization because of the high degree of freedom, especially when the component sizes and control parameters are simultaneously assessed. Based on a nonconventional sensitivity and correlation analysis performed on a simulation model for power-split PHEVs in this study, the product family design (PFD) concept and its implications will be investigated, and limitations of PFD for such a complex product along with directions for efficient family design of PHEVs will be discussed.


2020 ◽  
Vol 12 (14) ◽  
pp. 5571
Author(s):  
Anastasia Gorbunova ◽  
Ilya Anisimov ◽  
Elena Magaril

The energy industry is a leader of introduction and development of energy supply technologies from renewable energy sources. However, there are some disadvantages of these energy systems, namely, the low density and inconsistent nature of the energy input, which leads to an increase in the cost of the produced electric energy in comparison to the traditional energy complexes using hydrocarbon fuel resources. Therefore, the smart grid technology based on preliminary calculation parameters of the energy system develops in cities. This area should also be used to organize the charging infrastructure of electric vehicles, as the electrification of road transport is one of the global trends. As a result, a current task of the transport and energy field is the development of scientifically based approaches to the formation of the urban charging infrastructure for electric vehicles. The purpose of the article is to identify the features of the application flow formation for the charge of the electric vehicle battery. The results obtained provide a basis for building a simulation model for determining the required number of charging stations in the city, taking into account the criteria of minimizing operating costs for electric vehicle owners and energy companies.


2014 ◽  
Vol 115 ◽  
pp. 582-590 ◽  
Author(s):  
Samveg Saxena ◽  
Anand Gopal ◽  
Amol Phadke

2017 ◽  
Vol 42 (26) ◽  
pp. 16675-16685 ◽  
Author(s):  
Krishna Reddi ◽  
Amgad Elgowainy ◽  
Neha Rustagi ◽  
Erika Gupta

Sign in / Sign up

Export Citation Format

Share Document