On-chip optical power measurement by optical force

Author(s):  
J. F. Tao ◽  
H. Cai ◽  
A. B. Yu ◽  
W. M. Zhu ◽  
Q. X. Zhang ◽  
...  
Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 57 ◽  
Author(s):  
Lin Ren ◽  
Yunpeng Li ◽  
Na Li ◽  
Chao Chen

Particle trapping and sensing serve as important tools for non-invasive studies of individual molecule or cell in bio-photonics. For such applications, it is required that the optical power to trap and detect particles is as low as possible, since large optical power would have side effects on biological particles. In this work, we proposed to deploy a nanobeam photonic crystal cavity for particle trapping and opto-mechanical sensing. For particles captured at 300 K, the input optical power was predicted to be as low as 48.8 μW by calculating the optical force and potential of a polystyrene particle with a radius of 150 nm when the trapping cavity was set in an aqueous environment. Moreover, both the optical and mechanical frequency shifts for particles with different sizes were calculated, which can be detected and distinguished by the optomechanical coupling between the particle and the designed cavity. The relative variation of the mechanical frequency achieved approximately 400%, which indicated better particle sensing compared with the variation of the optical frequency (±0.06%). Therefore, our proposed cavity shows promising potential as functional components in future particle trapping and manipulating applications in lab-on-chip.


2019 ◽  
Vol 963 ◽  
pp. 832-836 ◽  
Author(s):  
Shuo Ben Hou ◽  
Per Erik Hellström ◽  
Carl Mikael Zetterling ◽  
Mikael Östling

This paper presents our in-house fabricated 4H-SiC n-p-n phototransistors. The wafer mapping of the phototransistor on two wafers shows a mean maximum forward current gain (βFmax) of 100 at 25 °C. The phototransistor with the highest βFmax of 113 has been characterized from room temperature to 500 °C. βFmax drops to 51 at 400 °C and remains the same at 500 °C. The photocurrent gain of the phototransistor is 3.9 at 25 °C and increases to 14 at 500 °C under the 365 nm UV light with the optical power of 0.31 mW. The processing of the phototransistor is same to our 4H-SiC-based bipolar integrated circuits, so it is a promising candidate for 4H-SiC opto-electronics on-chip integration.


Nanophotonics ◽  
2017 ◽  
Vol 6 (5) ◽  
pp. 1121-1131 ◽  
Author(s):  
Hao Wu ◽  
Ke Ma ◽  
Yaocheng Shi ◽  
Lech Wosinski ◽  
Daoxin Dai

AbstractWe propose and demonstrate an ultracompact on-chip photothermal power monitor based on a silicon hybrid plasmonic waveguide (HPWG), which consists of a metal strip, a silicon core, and a silicon oxide (SiO2) insulator layer between them. When light injected to an HPWG is absorbed by the metal strip, the temperature increases and the resistance of the metal strip changes accordingly due to the photothermal and thermal resistance effects of the metal. Therefore, the optical power variation can be monitored by measuring the resistance of the metal strip on the HPWG. To obtain the electrical signal for the resistance measurement conveniently, a Wheatstone bridge circuit is monolithically integrated with the HPWG on the same chip. As the HPWG has nanoscale light confinement, the present power monitor is as short as ~3 μm, which is the smallest photothermal power monitor reported until now. The compactness helps to improve the thermal efficiency and the response speed. For the present power monitor fabricated with simple fabrication processes, the measured responsivity is as high as about 17.7 mV/mW at a bias voltage of 2 V and the power dynamic range is as large as 35 dB.


2002 ◽  
Vol 729 ◽  
Author(s):  
Nicholas Moelders ◽  
Martin U. Pralle ◽  
Mark P. McNeal ◽  
Irina Puscasu ◽  
Lisa Last ◽  
...  

AbstractHere we describe the evolution of a silicon, MEMS-based chip design developed for infrared gas and chemical detection. The “Sensor-Chip,” with integrated photonic crystal and reflective optics, employs narrow-band optical emission/absorption for selective identification of gas and chemical species. Gas concentration is derived from attenuated optical power, which results in a change in device set point. This change in temperature results in a change in device resistance, via the TCR of the Si. Thermal non-uniformity across the device results in optical “noise” and accelerates localized thermal and electrical failures. This paper reports the influence of processing and design, on achieving uniformly heated, high reliability devices. Specifically, we examine the role of contacts, drive scheme, and device thermal distribution on chip design. Experimentally the temperature uniformity was characterized using an infrared camera. Experimental results indicate that the design of the contact areas in combination with the device design is essential for the reliable performance of the Sensor-Chip. Redesigned devices were fabricated and demonstrated as highly-selective gas and chemical sensors.


Author(s):  
Thijs Spuesens ◽  
Shibnath Pathak ◽  
Michael Vanslembrouck ◽  
Pieter Dumon ◽  
Wim Bogaerts

Sign in / Sign up

Export Citation Format

Share Document