Performance evaluation of five classification algorithms in low-dimensional feature vectors extracted from EEG signals

Author(s):  
Onder Aydemir ◽  
Mehmet Ozturk ◽  
Temel Kayikcioglu
2020 ◽  
Vol 10 (5) ◽  
pp. 1797 ◽  
Author(s):  
Mera Kartika Delimayanti ◽  
Bedy Purnama ◽  
Ngoc Giang Nguyen ◽  
Mohammad Reza Faisal ◽  
Kunti Robiatul Mahmudah ◽  
...  

Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.


Mekatronika ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 115-121
Author(s):  
Asrul Adam ◽  
Ammar Faiz Zainal Abidin ◽  
Zulkifli Md Yusof ◽  
Norrima Mokhtar ◽  
Mohd Ibrahim Shapiai

In this paper, the developments in the field of EEG signals peaks detection and classification methods based on time-domain analysis have been discussed. The use of peak classification algorithm has end up the most significant approach in several applications. Generally, the peaks detection and classification algorithm is a first step in detecting any event-related for the variation of signals. A review based on the variety of peak models on their respective classification methods and applications have been investigated. In addition, this paper also discusses on the existing feature selection algorithms in the field of peaks classification.


Author(s):  
Anne H.H. Ngu ◽  
Jialie Shen ◽  
John Shepherd

The optimized distance-based access methods currently available for multimedia databases are based on two major assumptions: a suitable distance function is known a priori, and the dimensionality of image features is low. The standard approach to building image databases is to represent images via vectors based on low-level visual features and make retrieval based on these vectors. However, due to the large gap between the semantic notions and low-level visual content, it is extremely difficult to define a distance function that accurately captures the similarity of images as perceived by humans. Furthermore, popular dimension reduction methods suffer from either the inability to capture the nonlinear correlations among raw data or very expensive training cost. To address the problems, in this chapter we introduce a new indexing technique called Combining Multiple Visual Features (CMVF) that integrates multiple visual features to get better query effectiveness. Our approach is able to produce low-dimensional image feature vectors that include not only low-level visual properties but also high-level semantic properties. The hybrid architecture can produce feature vectors that capture the salient properties of images yet are small enough to allow the use of existing high-dimensional indexing methods to provide efficient and effective retrieval.


2013 ◽  
Vol 13 (03) ◽  
pp. 1350033 ◽  
Author(s):  
OLIVER FAUST ◽  
WENWEI YU ◽  
NAHRIZUL ADIB KADRI

This paper describes a computer-based identification system of normal and alcoholic Electroencephalography (EEG) signals. The identification system was constructed from feature extraction and classification algorithms. The feature extraction was based on wavelet packet decomposition (WPD) and energy measures. Feature fitness was established through the statistical t-test method. The extracted features were used as training and test data for a competitive 10-fold cross-validated analysis of six classification algorithms. This analysis showed that, with an accuracy of 95.8%, the k-nearest neighbor (k-NN) algorithm outperforms naïve Bayes classification (NBC), fuzzy Sugeno classifier (FSC), probabilistic neural network (PNN), Gaussian mixture model (GMM), and decision tree (DT). The 10-fold stratified cross-validation instilled reliability in the result, therefore we are confident when we state that EEG signals can be used to automate both diagnosis and treatment monitoring of alcoholic patients. Such an automatization can lead to cost reduction by relieving medical experts from routine and administrative tasks.


Sign in / Sign up

Export Citation Format

Share Document