COMPUTER-BASED IDENTIFICATION OF NORMAL AND ALCOHOLIC EEG SIGNALS USING WAVELET PACKETS AND ENERGY MEASURES

2013 ◽  
Vol 13 (03) ◽  
pp. 1350033 ◽  
Author(s):  
OLIVER FAUST ◽  
WENWEI YU ◽  
NAHRIZUL ADIB KADRI

This paper describes a computer-based identification system of normal and alcoholic Electroencephalography (EEG) signals. The identification system was constructed from feature extraction and classification algorithms. The feature extraction was based on wavelet packet decomposition (WPD) and energy measures. Feature fitness was established through the statistical t-test method. The extracted features were used as training and test data for a competitive 10-fold cross-validated analysis of six classification algorithms. This analysis showed that, with an accuracy of 95.8%, the k-nearest neighbor (k-NN) algorithm outperforms naïve Bayes classification (NBC), fuzzy Sugeno classifier (FSC), probabilistic neural network (PNN), Gaussian mixture model (GMM), and decision tree (DT). The 10-fold stratified cross-validation instilled reliability in the result, therefore we are confident when we state that EEG signals can be used to automate both diagnosis and treatment monitoring of alcoholic patients. Such an automatization can lead to cost reduction by relieving medical experts from routine and administrative tasks.

2012 ◽  
Vol 12 (05) ◽  
pp. 1240028 ◽  
Author(s):  
EE PING NG ◽  
TEIK-CHENG LIM ◽  
SUBHAGATA CHATTOPADHYAY ◽  
MURALIDHAR BAIRY

Epilepsy is a common neurological disorder characterized by recurrence seizures. Alcoholism causes organic changes in the brain, resulting in seizure attacks similar to epileptic fits. Hence, it is challenging to differentiate the cause of fits as epileptic or alcoholism, which is important for deciding on the treatment in the neurology ward. The focus of this paper is to automatically differentiate epileptic, normal, and alcoholic electroencephalogram (EEG) signals. As the EEG signals are non-linear and dynamic in nature, it is difficult to tell the subtle changes in these signals with the help of linear techniques or by the naked eye. Therefore, to analyze the normal (control), epileptic, and alcoholic EEG signals, two non-linear methods, such as recurrence plots (RPs) and then recurrence quantification analysis (RQA) are adopted. Approximately 10 RQA parameters have been used to classify the EEG signals into three distinct classes, i.e., normal, epileptic, and alcoholic. Six classifiers, such as support vector machine (SVM), radial basis probabilistic neural network (RBPNN), decision tree (DT), Gaussian mixture model (GMM), k-nearest neighbor (kNN), and fuzzy Sugeno classifiers have been developed to accomplish this task. Results show that the GMM classifier outperformed the other classifiers with a classification sensitivity of 99.6%, specificity of 98.3%, and accuracy of 98.6%.


2012 ◽  
Vol 22 (02) ◽  
pp. 1250002 ◽  
Author(s):  
U. RAJENDRA ACHARYA ◽  
S. VINITHA SREE ◽  
PENG CHUAN ALVIN ANG ◽  
RATNA YANTI ◽  
JASJIT S. SURI

Epilepsy, a neurological disorder, is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals, which are used to detect the presence of seizures, are non-linear and dynamic in nature. Visual inspection of the EEG signals for detection of normal, interictal, and ictal activities is a strenuous and time-consuming task due to the huge volumes of EEG segments that have to be studied. Therefore, non-linear methods are being widely used to study EEG signals for the automatic monitoring of epileptic activities. The aim of our work is to develop a Computer Aided Diagnostic (CAD) technique with minimal pre-processing steps that can classify all the three classes of EEG segments, namely normal, interictal, and ictal, using a small number of highly discriminating non-linear features in simple classifiers. To evaluate the technique, segments of normal, interictal, and ictal EEG segments (100 segments in each class) were used. Non-linear features based on the Higher Order Spectra (HOS), two entropies, namely the Approximation Entropy (ApEn) and the Sample Entropy (SampEn), and Fractal Dimension and Hurst Exponent were extracted from the segments. Significant features were selected using the ANOVA test. After evaluating the performance of six classifiers (Decision Tree, Fuzzy Sugeno Classifier, Gaussian Mixture Model, K-Nearest Neighbor, Support Vector Machine, and Radial Basis Probabilistic Neural Network) using a combination of the selected features, we found that using a set of all the selected six features in the Fuzzy classifier resulted in 99.7% classification accuracy. We have demonstrated that our technique is capable of achieving high accuracy using a small number of features that accurately capture the subtle differences in the three different types of EEG (normal, interictal, and ictal) segments. The technique can be easily written as a software application and used by medical professionals without any extensive training and cost. Such software can evolve into an automatic seizure monitoring application in the near future and can aid the doctors in providing better and timely care for the patients suffering from epilepsy.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Daniel Bonet-Solà ◽  
Rosa Ma Alsina-Pagès

Acoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.


2020 ◽  
Vol 10 (10) ◽  
pp. 672 ◽  
Author(s):  
Choong Wen Yean ◽  
Wan Khairunizam Wan Ahmad ◽  
Wan Azani Mustafa ◽  
Murugappan Murugappan ◽  
Yuvaraj Rajamanickam ◽  
...  

Emotion assessment in stroke patients gives meaningful information to physiotherapists to identify the appropriate method for treatment. This study was aimed to classify the emotions of stroke patients by applying bispectrum features in electroencephalogram (EEG) signals. EEG signals from three groups of subjects, namely stroke patients with left brain damage (LBD), right brain damage (RBD), and normal control (NC), were analyzed for six different emotional states. The estimated bispectrum mapped in the contour plots show the different appearance of nonlinearity in the EEG signals for different emotional states. Bispectrum features were extracted from the alpha (8–13) Hz, beta (13–30) Hz and gamma (30–49) Hz bands, respectively. The k-nearest neighbor (KNN) and probabilistic neural network (PNN) classifiers were used to classify the six emotions in LBD, RBD and NC. The bispectrum features showed statistical significance for all three groups. The beta frequency band was the best performing EEG frequency-sub band for emotion classification. The combination of alpha to gamma bands provides the highest classification accuracy in both KNN and PNN classifiers. Sadness emotion records the highest classification, which was 65.37% in LBD, 71.48% in RBD and 75.56% in NC groups.


2011 ◽  
Vol 21 (03) ◽  
pp. 199-211 ◽  
Author(s):  
U. RAJENDRA ACHARYA ◽  
S. VINITHA SREE ◽  
SUBHAGATA CHATTOPADHYAY ◽  
WENWEI YU ◽  
PENG CHUAN ALVIN ANG

Epilepsy is a common neurological disorder that is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals are widely used to diagnose seizures. Because of the non-linear and dynamic nature of the EEG signals, it is difficult to effectively decipher the subtle changes in these signals by visual inspection and by using linear techniques. Therefore, non-linear methods are being researched to analyze the EEG signals. In this work, we use the recorded EEG signals in Recurrence Plots (RP), and extract Recurrence Quantification Analysis (RQA) parameters from the RP in order to classify the EEG signals into normal, ictal, and interictal classes. Recurrence Plot (RP) is a graph that shows all the times at which a state of the dynamical system recurs. Studies have reported significantly different RQA parameters for the three classes. However, more studies are needed to develop classifiers that use these promising features and present good classification accuracy in differentiating the three types of EEG segments. Therefore, in this work, we have used ten RQA parameters to quantify the important features in the EEG signals.These features were fed to seven different classifiers: Support vector machine (SVM), Gaussian Mixture Model (GMM), Fuzzy Sugeno Classifier, K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), Decision Tree (DT), and Radial Basis Probabilistic Neural Network (RBPNN). Our results show that the SVM classifier was able to identify the EEG class with an average efficiency of 95.6%, sensitivity and specificity of 98.9% and 97.8%, respectively.


2013 ◽  
Vol 23 (03) ◽  
pp. 1350009 ◽  
Author(s):  
U. RAJENDRA ACHARYA ◽  
RATNA YANTI ◽  
JIA WEI ZHENG ◽  
M MUTHU RAMA KRISHNAN ◽  
JEN HONG TAN ◽  
...  

Epilepsy is a chronic brain disorder which manifests as recurrent seizures. Electroencephalogram (EEG) signals are generally analyzed to study the characteristics of epileptic seizures. In this work, we propose a method for the automated classification of EEG signals into normal, interictal and ictal classes using Continuous Wavelet Transform (CWT), Higher Order Spectra (HOS) and textures. First the CWT plot was obtained for the EEG signals and then the HOS and texture features were extracted from these plots. Then the statistically significant features were fed to four classifiers namely Decision Tree (DT), K-Nearest Neighbor (KNN), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to select the best classifier. We observed that the SVM classifier with Radial Basis Function (RBF) kernel function yielded the best results with an average accuracy of 96%, average sensitivity of 96.9% and average specificity of 97% for 23.6 s duration of EEG data. Our proposed technique can be used as an automatic seizure monitoring software. It can also assist the doctors to cross check the efficacy of their prescribed drugs.


2019 ◽  
Vol 1 (3) ◽  
pp. 236-243
Author(s):  
Muhammad Ihsan Zul ◽  
Dzaky Kurniawan ◽  
Rahmat Suhatman

Common surveillance device that used to monitor an area is known as CCTV. The CCTV will provide results in the form of video recordings, which can then be accessed by wireless communication. In its use, CCTV needs humans to monitor the real condition of the area/place. Then the use of CCTV becomes less efficient when used to oversee a place where the room rarely has movement. Because CCTV cannot detect or identify suspicious actions automatically. This research aim to develop a method that can be used to identify the activity (irregular movements) automatically. In this case, the change to be determined was the activities towards the Politeknik Caltex Riau Computer Based Test (CBT) participants. The CBT room has been employed by the IP Camera to identify participant activities. The IP camera captures the image and the image is then processed by the feature extraction method. Proposed feature exctraction method are background subtraction and pixel mapping. Pixel mapping is a method that maps objects based on specified ratio data. There are 18 ratio data generated by this feature extraction process. The determination of the illegal activities done by using the k-Nearest Neighbor. The Algorithm detects the illegal movement by using 502 datasets, and the accuracy obtained was between 98% - 98.4% with an average accuracy of 98.2% for the value of neighborliness = 3. The result can conclude that the method can identify the illegal activities of a CBT participant in the CBT room


2014 ◽  
Vol 14 (03) ◽  
pp. 1450035 ◽  
Author(s):  
OLIVER FAUST ◽  
PENG CHUAN ALVIN ANG ◽  
SUBHA D. PUTHANKATTIL ◽  
PAUL K. JOSEPH

Electroencephalography (EEG) is a measure which represents the functional activity of the brain. We show that a detailed analysis of EEG measurements provides highly discriminant features which indicate the mental state of patients with clinical depression. Our feature extraction method revolves around a novel processing structure that combines wavelet packet decomposition (WPD) and non-linear algorithms. WPD was used to select appropriate EEG frequency bands. The resulting signals were processed with the non-linear measures of approximate entropy (ApEn), sample entropy (SampEn), renyi entropy (REN) and bispectral phase entropy ( P h). The features were selected using t-test and only discriminative features were fed to various classifiers, namely probabilistic neural network (PNN), support vector machine (SVM), decision tree (DT), k-nearest neighbor algorithm (k-NN), naive bayes classification (NBC), Gaussian mixture model (GMM) and Fuzzy Sugeno Classifier (FSC). Our classification results show that, with a classification accuracy of 99.5%, the PNN classifier performed better than the rest of classifiers in discriminating between normal and depression EEG signals. Hence, the proposed decision support system can be used to diagnose, and monitor the treatment of patients suffering from depression.


2020 ◽  
Vol 16 (3) ◽  
pp. 243-253
Author(s):  
Shahad Sultan ◽  
Mayada Faris Ghanim

A biometric authentication system provides an automatic person authentication based on some characteristic features possessed by the individual. Among all other biometrics, human retina is a secure and reliable source of person recognition as it is unique, universal, lies at the back of the eyeball and hence it is unforgeable. The process of authentication mainly includes pre-processing, feature extraction and then features matching and classification. Also authentication systems are mainly appointed in verification and identification mode according to the specific application. In this paper, preprocessing and image enhancement stages involve several steps to highlight interesting features in retinal images. The feature extraction stage is accomplished using a bank of Gabor filter with number of orientations and scales. Generalized Discriminant Analysis (GDA) technique has been used to reduce the size of feature vectors and enhance the performance of proposed algorithm. Finally, classification is accomplished using k-nearest neighbor (KNN) classifier to determine the identity of the genuine user or reject the forged one as the proposed method operates in identification mode. The main contribution in this paper is using Generalized Discriminant Analysis (GDA) technique to address ‘curse of dimensionality’ problem. GDA is a novel method used in the area of retina recognition.


2018 ◽  
Vol 4 (1) ◽  
pp. 68-74
Author(s):  
Faris Muslihul Amin

The research aimed to create a fresh chicken meat identification system to detect differences between formalin and non-formalin chicken meat based on the image of raw chicken meat. Feature extraction method used is the Feature Texture method which is included in the statistical method where the statistical calculation uses a gray degree distribution (histogram) by measuring the level of contrast, granularity, and roughness of an area from the neighboring relationships between pixels in the image then feature extraction, results feature extraction is then classified by K-NN. With the classification using K-NN results obtained high classification accuracy. The K-NN method is a very good method of dealing with the problem of recognizing complex patterns in the form of data training and processing calibration, based on very fast and high accurate literature methods more than other methods. Observation images will be carried out at various distances between the smartphone camera and chicken meat samples.


Sign in / Sign up

Export Citation Format

Share Document