Linear Canonical Wigner Distribution Based Noisy LFM Signals Detection Through the Output SNR Improvement Analysis

2019 ◽  
Vol 67 (21) ◽  
pp. 5527-5542 ◽  
Author(s):  
Zhichao Zhang
Author(s):  
Sheng-Zhou Qiang ◽  
Xian Jiang ◽  
Pu-Yu Han ◽  
Xi-Ya Shi ◽  
An-Yang Wu ◽  
...  

AbstractLinear canonical transform (LCT) is a powerful tool for improving the detection accuracy of the conventional Wigner distribution (WD). However, the LCT free parameters embedded increase computational complexity. Recently, the instantaneous cross-correlation function type of WD (ICFWD), a specific WD relevant to the LCT, has shown to be an outcome of the tradeoff between detection accuracy and computational complexity. In this paper, the ICFWD is applied to detect noisy single component and bi-component linear frequency-modulated (LFM) signals through the output signal-to-noise ratio (SNR) inequality modeling and solving with respect to the ICFWD and WD. The expectation-based output SNR inequality model between the ICFWD and WD on a pure deterministic signal added with a zero-mean random noise is proposed. The solutions of the inequality model in regard to single component and bi-component LFM signals corrupted with additive zero-mean stationary noise are obtained respectively. The detection accuracy of ICFWD with that of the closed-form ICFWD (CICFWD), the affine characteristic Wigner distribution (ACWD), the kernel function Wigner distribution (KFWD), the convolution representation Wigner distribution (CRWD) and the classical WD is compared. It also compares the computing speed of ICFWD with that of CICFWD, ACWD, KFWD and CRWD.


2021 ◽  
Vol 11 (4) ◽  
pp. 1509
Author(s):  
Anbang Zhao ◽  
Caigao Zeng ◽  
Juan Hui ◽  
Keren Wang ◽  
Kaiyu Tang

Time reversal (TR) can achieve temporal and spatial focusing by exploiting spatial diversity in complex underwater environments with significant multipath. This property makes TR useful for underwater acoustic (UWA) communications. Conventional TR is realized by performing equal gain combining (EGC) on the single element TR output signals of each element of the vertical receive array (VRA). However, in the actual environment, the signal-to-noise ratio (SNR) and the received noise power of each element are different, which leads to the reduction of the focusing gain. This paper proposes a time reversal maximum ratio combining (TR-MRC) method to process the received signals of the VRA, so that a higher output SNR can be obtained. The theoretical derivation of the TR-MRC weight coefficients indicates that the weight coefficients are only related to the input noise power of each element, and are not affected by the multipath structure. The correctness of the derivation is demonstrated with the experimental data of the long-range UWA communications conducted in the South China Sea. In addition, the experimental results illustrate that compared to the conventional TR, TR-MRC can provide better performance in terms of output SNR and bit error rate (BER) in UWA communications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Damian Kołaczek ◽  
Bartłomiej J. Spisak ◽  
Maciej Wołoszyn

AbstractThe coherent superposition of two well separated Gaussian wavepackets, with defects caused by their imperfect preparation, is considered within the phase-space approach based on the Wigner distribution function. This generic state is called the defective Schrödinger cat state due to this imperfection which significantly modifies the interference term. Propagation of this state in the phase space is described by the Moyal equation which is solved for the case of a dispersive medium with a Gaussian barrier in the above-barrier reflection regime. Formally, this regime constitutes conditions for backscattering diffraction phenomena. Dynamical quantumness and the degree of localization in the phase space of the considered state as a function of its imperfection are the subject of the performed analysis. The obtained results allow concluding that backscattering communication based on the defective Schrödinger cat states appears to be feasible with existing experimental capabilities.


Sign in / Sign up

Export Citation Format

Share Document