A Minimum Variance, Time Optimal, Control System Model of Human Lens Accommodation

1969 ◽  
Vol 5 (4) ◽  
pp. 290-299 ◽  
Author(s):  
William O'Neill ◽  
C. Sanathanan ◽  
Jerald Brodkey
2017 ◽  
Vol 7 (4) ◽  
pp. 1753-1758
Author(s):  
S. M. M. Shariatmadar ◽  
S. M. J. Jafarian

In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.


Author(s):  
Natalya A. Il’ina

The task of organization a closed time-optimal control system of linear object with distributed parameters of parabolic type is considered. The object has two lumped internal controls for the power of heat sources excited in the electromagnetic field of an inductor. The proposed method for the synthesis of optimal controllers uses an alternance method for calculating the optimal program controls for each of the control actions. An example of the construction of a quasi-optimal time control system for the process of periodic induction heating of a metal workpiece with constant values of the feedback coefficients calculated for the most characteristic initial spatial distribution is given.


Author(s):  
William J. O’Connor ◽  
David J. McKeown

This paper presents a new, robust, time-optimal control strategy for flexible manipulators controlled by acceleration-limited actuators. The strategy is designed by combining the well-known, open-loop, time-optimal solution with wave-based feedback control. The time-optimal solution is used to design a new launch wave input to the wave-based controller, allowing it to recreate the time-optimal solution when the system model is exactly known. If modeling errors are present or a real actuator is used, the residual vibrations, which would otherwise arise when using the time-optimal solution alone, are quickly suppressed due to the additional robustness provided by the wave-based controller. A proximal time-optimal response is still achieved. A robustness analysis shows that significant improvements can be achieved using wave-based control in conjunction with the time-optimal solution. The implications and limits are also discussed.


2013 ◽  
Vol 62 (4) ◽  
pp. 663-675
Author(s):  
Wojciech Kołton

Abstract This article presents the time optimal control system adopted to control double winding VCM motor. This kind of control is widely used in hard disk drive servo for head positioning. Mathematical model of double winding VCM motor is presented, and its implementation in MATLAB/Simulink is shown. The extended time optimal control algorithm is implemented on dSpace DS1104 board. The results obtained from simulation and real measurements are compared and discussed


Sign in / Sign up

Export Citation Format

Share Document