scholarly journals Simultaneous Identification and Control Using Active Signal Injection for Series Hybrid Electric Vehicles Based on Dynamic Programming

2020 ◽  
Vol 6 (1) ◽  
pp. 298-307
Author(s):  
Haojie Zhu ◽  
Ziyou Song ◽  
Jun Hou ◽  
Heath F. Hofmann ◽  
Jing Sun
Author(s):  
Zhila Pirmoradi ◽  
G. Gary Wang

Plug-in Hybrid Electric Vehicles (PHEVs) bear great promises for increasing fuel economy and decreasing greenhouse gas emissions by the use of advanced battery technologies and green energy resources. The design of a PHEV highly depends on several factors such as the selected powertrain configuration, control strategy, sizes of drivetrain components, expected range for propulsion purely by electric energy, known as AER, and the assumed driving conditions. Accordingly, design of PHEV powertrains for diverse customer segments requires thorough consideration of the market needs and the specific performance expectations of each segment. From the manufacturing perspective, these parameters provide the opportunity of mass customization because of the high degree of freedom, especially when the component sizes and control parameters are simultaneously assessed. Based on a nonconventional sensitivity and correlation analysis performed on a simulation model for power-split PHEVs in this study, the product family design (PFD) concept and its implications will be investigated, and limitations of PFD for such a complex product along with directions for efficient family design of PHEVs will be discussed.


2021 ◽  
Vol 54 (4) ◽  
pp. 599-606
Author(s):  
Punyavathi Ramineni ◽  
Alagappan Pandian

Many pollution-related issues are raising due to the usage of conventional internal combustion engines (ICEs) vehicles. Electric Vehicles/ Hybrid electric vehicles (EVs/HEVs) are the finest solutions to overcome those problems associated with ICE-based vehicles. The EVs are introduced with a signal energy source (SES), which is not a successful attempt, especially during transient vehicles, driving, etc. Multiple energy sources (MES) EVs are introduced to attain better performance than the SES vehicles, which is obtained by combining two sources like battery/fuel cells, ultracapacitor. In this contest, energy management (EMNG) plays a vital role in sharing the load to the sources as per the EVs requirement. In the case of MES-based EVs, the controller always plays a significant role in the related EMNG system because it is the key factor in improving vehicle efficiency. In this article, a study has mainly been done related to several conventional, intelligent controllers and control algorithms to do the proper EMNG between sources present in the EV.


2018 ◽  
Vol 51 (31) ◽  
pp. 383-389 ◽  
Author(s):  
Lukas Engbroks ◽  
Daniel Görke ◽  
Stefan Schmiedler ◽  
Jochen Strenkert ◽  
Bernhard Geringer

Sign in / Sign up

Export Citation Format

Share Document