Wavelet Transform Data-driven Machine Learning based Real-time Fault Detection for Naval Dc Pulsating Loads

Author(s):  
Yue Ma ◽  
Atif Maqsood ◽  
Damian Oslebo ◽  
Keith Corzine
Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2910
Author(s):  
Andreas Andreou ◽  
Constandinos X. Mavromoustakis ◽  
George Mastorakis ◽  
Jordi Mongay Batalla ◽  
Evangelos Pallis

Various research approaches to COVID-19 are currently being developed by machine learning (ML) techniques and edge computing, either in the sense of identifying virus molecules or in anticipating the risk analysis of the spread of COVID-19. Consequently, these orientations are elaborating datasets that derive either from WHO, through the respective website and research portals, or from data generated in real-time from the healthcare system. The implementation of data analysis, modelling and prediction processing is performed through multiple algorithmic techniques. The lack of these techniques to generate predictions with accuracy motivates us to proceed with this research study, which elaborates an existing machine learning technique and achieves valuable forecasts by modification. More specifically, this study modifies the Levenberg–Marquardt algorithm, which is commonly beneficial for approaching solutions to nonlinear least squares problems, endorses the acquisition of data driven from IoT devices and analyses these data via cloud computing to generate foresight about the progress of the outbreak in real-time environments. Hence, we enhance the optimization of the trend line that interprets these data. Therefore, we introduce this framework in conjunction with a novel encryption process that we are proposing for the datasets and the implementation of mortality predictions.


2020 ◽  
Author(s):  
Jung-Hyun Kim ◽  
Simon I. Briceno ◽  
Cedric Y. Justin ◽  
Dimitri Mavris

Author(s):  
Ming-Chuan Chiu ◽  
Chien-De Tsai ◽  
Tung-Lung Li

Abstract A cyber-physical system (CPS) is one of the key technologies of industry 4.0. It is an integrated system that merges computing, sensors, and actuators, controlled by computer-based algorithms that integrate people and cyberspace. However, CPS performance is limited by its computational complexity. Finding a way to implement CPS with reduced complexity while incorporating more efficient diagnostics, forecasting, and equipment health management in a real-time performance remains a challenge. Therefore, the study proposes an integrative machine-learning method to reduce the computational complexity and to improve the applicability as a virtual subsystem in the CPS environment. This study utilizes random forest (RF) and a time-series deep-learning model based on the long short-term memory (LSTM) networking to achieve real-time monitoring and to enable the faster corrective adjustment of machines. We propose a method in which a fault detection alarm is triggered well before a machine fails, enabling shop-floor engineers to adjust its parameters or perform maintenance to mitigate the impact of its shutdown. As demonstrated in two empirical studies, the proposed method outperforms other times-series techniques. Accuracy reaches 80% or higher 3 h prior to real-time shutdown in the first case, and a significant improvement in the life of the product (281%) during a particular process appears in the second case. The proposed method can be applied to other complex systems to boost the efficiency of machine utilization and productivity.


2021 ◽  
Author(s):  
Enrique Z. Losoya ◽  
Narendra Vishnumolakala ◽  
Samuel F. Noynaert ◽  
Zenon Medina-Cetina ◽  
Satish Bukkapatnam ◽  
...  

Abstract The objective of this study is to present a novel rock formation identification model using a data-driven modeling approach. This study explores the use of real-time drilling data to train and validate a classification model to improve the efficiency of the drilling process by reducing Mechanical Specific Energy (MSE). In this study, we demonstrate the feasibility of a layer-based determination and change detection of properties of rock formation currently being drilled as accurately and fast as possible. Data for this study was collected from a custom-built lab-scale drilling rig equipped with multiple sensors. The experiment was conducted by drilling through an arrangement of different rock formations of varying rock strength properties. Data was recorded and stored at a frequency of 2 kHz, then filtered, processed, and downsampled to extract relevant features. This dataset was used to train an Artificial Neural Network and other machine learning classification algorithms. Feature selection was made first with ten most notable features found by Random Forest, and the second set with derived measurements and down-sampled dynamic features from the sensors. The classification analysis was divided into two steps: the best predictors/features extraction and classification model building. The models were trained using multiple classification algorithms, namely logistic regression, linear discriminant analysis (LDA), Support Vector Machines (SVM), Random Forest (RF), and Artificial Neural Networks (ANN). It was found that random forest and ANN performed the best with prediction accuracy of 99.48% and 99.58%, respectively, for the data set with ten most prominent features. The high prediction rate accuracy for the most prominent predictors suggests that if the high-frequency data can be processed in real-time, predicting what formation we are drilling in is possible to achieve in near real-time. This can lead to significant savings for drilling companies as optimal drilling parameters can be computed, and in turn, optimized Mechanical Specific Energy can be obtained in real-time. Since the rock formation identification is time-consuming, we also describe here an alternative approach using slightly less accurate but equally powerful dynamic predictors. In this case, we show that our dynamic predictor models with RF and ANN yielded prediction accuracy of 96.30% and 95.61%, respectively. Both the prominent feature and dynamic predictor approaches are described in detail in this paper. Our results suggest that accurately predicting rock formation type in real-time while drilling is very much feasible with lesser computational cost and complexity. This study provides the building blocks for the development of a completely autonomous downhole device and Electronic Device Recorders (EDR) that reduces the need for highly sophisticated sensors or data transmission processes downhole.


Sign in / Sign up

Export Citation Format

Share Document