Ultra-wideband Channel Model for Intra-vehicular Wireless Sensor Networks Beneath the Chassis: From Statistical Model to Simulations

2013 ◽  
Vol 62 (1) ◽  
pp. 14-25 ◽  
Author(s):  
C. Umit Bas ◽  
Sinem Coleri Ergen
2020 ◽  
Vol 10 (12) ◽  
pp. 4374
Author(s):  
Seung-Hwan Kim ◽  
Jae-Woo Kim ◽  
Dong-Seong Kim

In this paper, the eight schemes for aircraft wireless sensor networks are investigated, which are single-hop array beamforming schemes (including analog beamforming (ABF), and digital beamforming (DBF)), non-cooperative schemes (including single-hop and multi-hop schemes), cooperative schemes (including amplify and forward (AF), decode and forward (DF)), and incremental cooperative schemes (incremental decode and forward (IDF), and incremental amplify and forward (IAF)). To set up the aircraft wireless communication environment, we design the aircraft channel model by referring to the experimental parameters of the ITU (International Telecommunication Union)-R M.2283, which is composed of path loss, shadowing fading, and multi-path fading channel responses. To evaluate the performance, the conditions energy consumption and throughput analysis are performed. Through simulation results, the incremental cooperative scheme outperformed by 66.8% better at spectral efficiency 2 than the DBF scheme in terms of the energy consumption metric. Whereas, in terms of throughput metric, overall SNR (signal-to-noise ratio) ranged from −20 to 30 dB the beamforming scheme had the best performance in which the beamforming scheme at SNR 0 dB achieved 85.4% better than the multi-hop scheme. Finally, in terms of normalized throughput metric in low SNR range between −20 and 1 dB the ABF scheme had the best performance over the others in which the ABF at SNR 0 dB achieved 75.4% better than the multi-hop scheme. Whereas, in high SNR range between 2 and 30 dB the IDF scheme had the best performance in which the IDF at SNR 10 dB achieved 62.2% better than the multi-hop scheme.


2014 ◽  
Vol 20 (2) ◽  
pp. 426-429
Author(s):  
Toni Koskinen ◽  
Arto Toppinen ◽  
Matti Sipilä ◽  
Marek Milosz

Sign in / Sign up

Export Citation Format

Share Document