Energy-aware Dynamic Selection of Overlay and Underlay Spectrum Sharing for Cognitive Small cells

Author(s):  
Pavel Mach ◽  
Zdenek Becvar
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


2000 ◽  
Vol 11 (1) ◽  
pp. 73-81 ◽  
Author(s):  
V. Subramaniam ◽  
G. K. Lee ◽  
G. S. Hong ◽  
Y. S. Wong ◽  
T. Ramesh

Author(s):  
Rafael Estepa ◽  
Antonio Estepa ◽  
Germán Madinabeitia ◽  
Mark Davis

This paper presents an adaptive algorithm that improves the energy efficiency of VoIP applications over IEEE 802.11 networks. The algorithm seeks to achieve the largest energy savings subject to reaching a minimum speech quality under the prevailing network conditions. The control mechanism used is the dynamic selection of the packet size during the communication.This algorithm has been implemented in an experimental testbed and the results demonstrate that our packetization rate control algorithm can provide energy savings in uncongested IEEE 802.11 networks (up to 30%). Furthermore, under poor network conditions the algorithm can prolong the duration of the call before it is dropped at the expense of a higher energy consumption.


Sign in / Sign up

Export Citation Format

Share Document