On Maximizing Min Source Rate in Power Beacon Assisted IoTs Networks

2020 ◽  
Vol 69 (10) ◽  
pp. 11880-11892
Author(s):  
Tengjiao He ◽  
Kwan-Wu Chin ◽  
Sieteng Soh ◽  
Changlin Yang ◽  
Jinming Wen
Keyword(s):  
jpa ◽  
1992 ◽  
Vol 5 (4) ◽  
pp. 607-610 ◽  
Author(s):  
K. L. Wells ◽  
W. O. Thom ◽  
H. B. Rice

1978 ◽  
Vol 58 (1) ◽  
pp. 99-101 ◽  
Author(s):  
C. G. KOWALENKO ◽  
L. E. LOWE

Net mineralizable sulphate, extractable with 0.15% CaCl2, was measured on two soils incubated with a variety of nitrogen sources and rates. Significant effects of source, rate and of interactions were observed, but the responses of the two soils were quite dissimilar. Both net mineralization and net immobilization were encountered.


2018 ◽  
Author(s):  
Daniel J. Varon ◽  
Daniel J. Jacob ◽  
Jason McKeever ◽  
Dylan Jervis ◽  
Berke O. A. Durak ◽  
...  

Abstract. Anthropogenic methane emissions originate from a large number of relatively small point sources. The planned GHGSat satellite fleet aims to quantify emissions from individual point sources by measuring methane column plumes over selected ~ 10 × 10 km2 domains with ≤ 50 × 50 m2 pixel resolution and 1–5 % measurement precision. Here we develop algorithms for retrieving point source rates from such measurements. We simulate a large ensemble of instantaneous methane column plumes at 50 × 50 m2 pixel resolution for a range of atmospheric conditions using the Weather Research and Forecasting model (WRF) in large eddy simulation (LES) mode and adding instrument noise. We show that standard methods to infer source rates by Gaussian plume inversion or source pixel mass balance are prone to large errors because the turbulence cannot be properly parameterized on the small scale of instantaneous methane plumes. The integrated mass enhancement (IME) method, which relates total plume mass to source rate, and the cross-sectional flux method, which infers source rate from fluxes across plume transects, are better adapted to the problem. We show that the IME method with local measurements of the 10-m wind speed can infer source rates with error of 0.07–0.17 t h−1 + 5–12 % depending on instrument precision (1–5 %). The cross-sectional flux method has slightly larger errors (0.07–0.26 t h−1 + 8–12 %) but a simpler physical basis. For comparison, point sources larger than 0.5 t h−1 contribute more than 75 % of methane emissions reported to the U.S. Greenhouse Gas Reporting Program. Additional error applies if local wind speed measurements are not available, and may dominate the overall error at low wind speeds. Low winds are beneficial for source detection but not for source quantification.


2001 ◽  
Vol 109 (5) ◽  
pp. 2412-2412
Author(s):  
Hansang Park
Keyword(s):  

2010 ◽  
Vol 2010 ◽  
pp. 1-11
Author(s):  
Qin Guo ◽  
Mingxing Luo ◽  
Lixiang Li ◽  
Yixian Yang

From the perspectives of graph theory and combinatorics theory we obtain some new upper bounds on the number of encoding nodes, which can characterize the coding complexity of the network coding, both in feasible acyclic and cyclic multicast networks. In contrast to previous work, during our analysis we first investigate the simple multicast network with source rateh=2, and thenh≥2. We find that for feasible acyclic multicast networks our upper bound is exactly the lower bound given by M. Langberg et al. in 2006. So the gap between their lower and upper bounds for feasible acyclic multicast networks does not exist. Based on the new upper bound, we improve the computational complexity given by M. Langberg et al. in 2009. Moreover, these results further support the feasibility of signatures for network coding.


Sign in / Sign up

Export Citation Format

Share Document