Experimental Accuracy Assessment of Energy Storage System Mathematical Model

Author(s):  
Varvara Guzhavina ◽  
Gleb Nesterenko ◽  
Gleb Prankevich ◽  
Dmitriy Gladkov ◽  
Vyacheslav Zyryanov ◽  
...  
Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 34 ◽  
Author(s):  
Muhammad Saeed Uz Zaman ◽  
Raza Haider ◽  
Syed Basit Ali Bukhari ◽  
Hafiz Muhammad Ashraf ◽  
Chul-Hwan Kim

In recent decades, the power grid’s configuration is shifting towards a smart grid where responsive loads and energy storage systems (ESS) are finding an increased role in the power system operation. In the presented work, a mathematical formulation for frequency response analysis of a multi-machine power system is developed, considering the individual and combined roles of ESS and responsive loads. The validity of the developed model is demonstrated with the help of multiple case studies, which consider the various configurations of the power system. Moreover, different combinations of capacities of generation units, ESS and responsive loads are also simulated. With the help of mathematical model and simulation results, it is demonstrated that ESS and responsive loads may improve the economy and performance of the power system even during the failure of a certain portion of generation capacity. Though the case studies consider non-reheat turbines only, the mathematical model and conclusions are equally valid for other types of turbines as well.


2021 ◽  
Vol 3 (55) ◽  
pp. 41-48
Author(s):  
M. Matkovsky ◽  
◽  
K. Semenov ◽  

Purpose. The further introduction of electric transport is largely constrained by the insufficient energy capacity of existing energy storage devices. One of the possible replacements for the chemical accumulator is the flywheel energy storage, which has important advantages. This advantage is its potentially huge storage capacity. One of the disadvantages of flywheel drives is the presence of a gyroscopic moment, which leads to a deterioration in vehicle handling. Methodology. The authors of the work in their development of the flywheel drive have eliminated a number of shortcomings, but to use the drive, it is necessary to develop an operation algorithm and a mathematical model. A mathematical model of electrical and mechanical processes in the author’s electromechanical energy storage system is presented. It is shown that the charging and discharging currents of a storage device change exponentially with time, which should be taken into account when developing a specific implementation of drivers for storage motors. The algorithm of operation of the proposed electromechanical energy storage system in the modes of energy storage and energy withdrawal has been developed. Results. The verbal and graphical form of the algorithm is presented. It is noted that in the presence of an electromechanical transmission on a vehicle, the advantages of such a drive increase even more, which prompted the authors of this work to develop a new electromechanical transmission, which the authors plan to combine in the future with the developed drive based on one vehicle. Originality. In the direction of further increasing the efficiency of using the proposed storage device, as well as, incidentally, of their other types, it is also planned to use the electromechanical system for transmitting electricity to the vehicle, developed by the authors. Practical value. In the future, it is also planned to expand and clarify the algorithm of the drive, in order to take into account the types of charger, energy source, the presence of batteries on board the car, depending on the characteristics of the vehicle, road conditions, driver qualities, weather conditions, etc. (at the limit, go to an intelligent control system). It is planned to create a more detailed model of the drive. Figures 4, references 21.


2016 ◽  
Vol 136 (11) ◽  
pp. 824-832 ◽  
Author(s):  
Mami Mizutani ◽  
Takenori Kobayashi ◽  
Katsunori Watabe ◽  
Tomoki Wada

Sign in / Sign up

Export Citation Format

Share Document