scholarly journals Impacts of Responsive Loads and Energy Storage System on Frequency Response of a Multi-Machine Power System

Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 34 ◽  
Author(s):  
Muhammad Saeed Uz Zaman ◽  
Raza Haider ◽  
Syed Basit Ali Bukhari ◽  
Hafiz Muhammad Ashraf ◽  
Chul-Hwan Kim

In recent decades, the power grid’s configuration is shifting towards a smart grid where responsive loads and energy storage systems (ESS) are finding an increased role in the power system operation. In the presented work, a mathematical formulation for frequency response analysis of a multi-machine power system is developed, considering the individual and combined roles of ESS and responsive loads. The validity of the developed model is demonstrated with the help of multiple case studies, which consider the various configurations of the power system. Moreover, different combinations of capacities of generation units, ESS and responsive loads are also simulated. With the help of mathematical model and simulation results, it is demonstrated that ESS and responsive loads may improve the economy and performance of the power system even during the failure of a certain portion of generation capacity. Though the case studies consider non-reheat turbines only, the mathematical model and conclusions are equally valid for other types of turbines as well.

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 522
Author(s):  
Rajitha Udawalpola ◽  
Taisuke Masuta ◽  
Taisei Yoshioka ◽  
Kohei Takahashi ◽  
Hideaki Ohtake

Power imbalances such as power shortfalls and photovoltaic (PV) curtailments have become a major problem in conventional power systems due to the introduction of renewable energy sources. There can be large power shortfalls and PV curtailments because of PV forecasting errors. These imbalances might increase when installed PV capacity increases. This study proposes a new scheduling method to reduce power shortfalls and PV curtailments in a PV integrated large power system with a battery energy storage system (BESS). The model of the Kanto area, which is about 30% of Japan’s power usage with 60 GW grid capacity, is used in simulations. The effect of large PV power integration of 50 GW and 100 GW together with large BESS capacity of 100 GWh and 200 GWh has been studied. Mixed integer linear programming technique is used to calculate generator unit commitment and BESS charging and discharging schedules. The simulation results are shown for two months with high and low solar irradiance, which include days with large PV over forecast and under forecast errors. The results reveal that the proposed method eliminates power shortfalls by 100% with the BESS and reduce the PV curtailments by 69.5% and 95.2% for the months with high and low solar irradiance, respectively, when 200 GWh BESS and 100 GW PV power generation are installed.


Sign in / Sign up

Export Citation Format

Share Document