Management of Electrical Energy Consumption in Urban Residential Buildings

Author(s):  
Alexei A. Balabin ◽  
Dmitry A. Klavsuts ◽  
Irina L. Klavsuts ◽  
Alexander B. Klavsuts
2018 ◽  
Vol 41 ◽  
pp. 481-489 ◽  
Author(s):  
Mohammad Sepehr ◽  
Reza Eghtedaei ◽  
Ali Toolabimoghadam ◽  
Younes Noorollahi ◽  
Mohammad Mohammadi

Environments ◽  
2018 ◽  
Vol 5 (12) ◽  
pp. 133
Author(s):  
Álvaro de la Puente-Gil ◽  
Alberto González-Martínez ◽  
David Borge-Diez ◽  
Jorge Blanes-Peiró ◽  
Miguel de Simón-Martín

Health Services building stock is usually the top energy consumer in the Administrative sector, by a considerable margin. Therefore, energy consumption supervision, prediction, and improvement should be carried out for this group in a preferential manner. Most prior studies in this field have characterized the energy consumption of buildings based on complex simulations, which tend to be limited by modelisation restrictions and assumptions. In this paper, an improved method for the clusterization of buildings based on their electrical energy consumption is proposed and, then, reference profiles are determined by examining the variation of energy consumption over the typical yearly consumption period. The temporary variation has been analyzed by evaluating the temporary evolution of the area consumption index through data mining and statistical clusterization techniques. The proposed methodology has been applied to building stock of the Health Services in the Castilla y León region in Spain, based on three years of historical monthly electrical energy consumption data for over 250 buildings. This building stock consists of hospitals, health centers (with and without emergency services) and a miscellaneous set of administrative and residential buildings. Results reveal five distinct electrical consumption profiles that have been associated with five reference buildings, permitting significant improvement in the demand estimation as compared to merely using the classical energy consumption indicators.


2021 ◽  
pp. 1-15
Author(s):  
Fernanda P. Mota ◽  
Cristiano R. Steffens ◽  
Diana F. Adamatti ◽  
Silvia S. Da C Botelho ◽  
Vagner Rosa

2012 ◽  
Vol 16 (3) ◽  
pp. 131
Author(s):  
Didik Ariwibowo

Didik Ariwibowo, in this paper explain that energy audit activities conducted through several phases, namely: the initial audit, detailed audit, analysis of energy savings opportunities, and the proposed energy savings. Total energy consumed consists of electrical energy, fuel, and materials in this case is water. Electrical energy consumption data obtained from payment of electricity accounts for a year while consumption of fuel and water obtained from the payment of material procurement. From the calculation data, IKE hotels accounted for 420.867 kWh/m2.tahun, while the IKE standards for the hotel is 300 kWh/m2.tahun. Thus, IKE hotel included categorized wasteful in energy usage. The largest energy consumption on electric energy consumption. Largest electric energy consumption is on the air conditioning (AC-air conditioning) that is equal to 71.3%, and lighting and electrical equipment at 27.28%, and hot water supply system by 4.44%. Electrical energy consumption in AC looks very big. Ministry of Energy and Mineral Resources of the statutes, the profile of energy use by air conditioning at the hotel by 48.5%. With these considerations in the AC target for audit detail as the next phase of activity. The results of a detailed audit analysis to find an air conditioning system energy savings opportunities in pumping systems. Recommendations on these savings is the integration of automation on the pumping system and fan coil units (FCU). The principle of energy conservation in the pumping system is by installing variable speed drives (VSD) pump drive motor to adjust speed according to load on the FCU. Load variations FCU provide input on the VSD pumps to match. Adaptation is predicted pump can save electricity consumption up to 65.7%. Keywords: energy audit, IKE, AC


2014 ◽  
Vol 675-677 ◽  
pp. 1880-1886 ◽  
Author(s):  
Pedro D. Silva ◽  
Pedro Dinis Gaspar ◽  
J. Nunes ◽  
L.P.A Andrade

This paper provides a characterization of the electrical energy consumption of agrifood industries located in the central region of Portugal that use refrigeration systems to ensure the food safety. The study is based on the result analysis of survey data and energy characteristics of the participating companies belonging to the following agrifood sectors: meat, dairy, horticultural, distribution and wine. Through the quantification of energy consumption of companies is possible to determine the amount of greenhouse gases (GHGs) emissions indexed to its manufacturing process. Comparing the energy and GHGs emissions indexes of companies of a sector and between sectors is possible to create reference levels. With the results of this work is possible to rating the companies in relation to reference levels of energy and GHGs emissions and thus promote the rational use of energy by the application of practice measures for the improvement of the energy efficiency and the reduction of GHGs emissions.


Sign in / Sign up

Export Citation Format

Share Document