Integration of 4F2 selector-less crossbar array 2Mb ReRAM based on transition metal oxides for high density memory applications

Author(s):  
Hyung Dong Lee ◽  
S. G. Kim ◽  
K. Cho ◽  
H. Hwang ◽  
H. Choi ◽  
...  
2007 ◽  
Vol 997 ◽  
Author(s):  
Sheng Teng Hsu ◽  
TingKai Li

AbstractThe property of PCMO RRAM memory devices have been studied in terms of electrical pulse width, Pulse polarity, voltage ramping, film thickness, resistivity distribution, and temperature dependent of resistance. The PCMO material is deposited using MOD, PVD, or PLD process. The experimental results clearly indicated the resistance increase is due to localization of valence electrons. The narrow pulse induced resistance increase near the cathode indicated the localization of valence electrons is the effect of high density of excessive non-equilibrium electrons through the well known Jahn-Teller effect. High density of non-equilibrium electrons may also be induced by any other means such as displacement current, space charge limited current, SCLC, and radiation. High field intensity collapses the localized valence electrons and returns the device to the low resistance state. This is the intrinsic property of transition metal oxides. We expect all doped and un-doped transition metal oxides to exhibit resistance switching property.


Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


Author(s):  
Michel Fialin ◽  
Guy Rémond

Oxygen-bearing minerals are generally strong insulators (e.g. silicates), or if not (e.g. transition metal oxides), they are included within a rock matrix which electrically isolates them from the sample holder contacts. In this respect, a thin carbon layer (150 Å in our laboratory) is evaporated on the sections in order to restore the conductivity. For silicates, overestimated oxygen concentrations are usually noted when transition metal oxides are used as standards. These trends corroborate the results of Bastin and Heijligers on MgO, Al2O3 and SiO2. According to our experiments, these errors are independent of the accelerating voltage used (fig.l).Owing to the low density of preexisting defects within the Al2O3 single-crystal, no significant charge buildup occurs under irradiation at low accelerating voltage (< 10keV). As a consequence, neither beam instabilities, due to electrical discharges within the excited volume, nor losses of energy for beam electrons before striking the sample, due to the presence of the electrostatic charge-induced potential, are noted : measurements from both coated and uncoated samples give comparable results which demonstrates that the carbon coating is not the cause of the observed errors.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 256
Author(s):  
Christian Rodenbücher ◽  
Kristof Szot

Transition metal oxides with ABO3 or BO2 structures have become one of the major research fields in solid state science, as they exhibit an impressive variety of unusual and exotic phenomena with potential for their exploitation in real-world applications [...]


2021 ◽  
Vol 36 ◽  
pp. 514-550
Author(s):  
Zhihao Lei ◽  
Jang Mee Lee ◽  
Gurwinder Singh ◽  
C.I. Sathish ◽  
Xueze Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document