Design and implementation of an electric drive system for in-wheel motor electric vehicle applications

Author(s):  
R. Nejat Tuncay ◽  
Ozgur Ustun ◽  
Murat Yilmaz ◽  
Can Gokce ◽  
Utku Karakaya
2021 ◽  
Vol 2021 ◽  
pp. 1-9 ◽  
Author(s):  
Qinghai Zhao ◽  
Hongxin Zhang ◽  
Yafei Xin

The vehicle will generate an amount of current while the electric vehicle just starting to regeneratively brake. In order to avoid the impact of high current on the traction battery, a novel electrohydraulic hybrid electric vehicle has been proposed. The main power source is supplied by the electric drive system, and the hydraulic system performs the auxiliary drive system that fully exerts the advantages of the electric drive system and the hydraulic drive system. A proper regenerative braking control strategy is presented, and the control parameters are determined by the fuzzy optimization algorithm. The simulation analysis built the model through the united simulation of AMESim and MATLAB/Simulink. The results illustrated that the optimized control strategy can reduce battery consumption by 1.22% under NEDC-operating conditions.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1241 ◽  
Author(s):  
Jianjun Hu ◽  
Ying Yang ◽  
Meixia Jia ◽  
Yongjie Guan ◽  
Chunyun Fu ◽  
...  

In order to study the influence of harmonic torque on the performance of the integrated electric drive system (permanent magnet synchronous motor + reducer gear pair) in a pure electric vehicle (PEV), the electromechanical coupling dynamic model of a PEV was established by considering the dead-time effect and voltage drop effect of an inverter and the nonlinear characteristics of the transmission system. Based on the model, the dynamic characteristics of an integrated electric drive system (IEDS) are studied, and the interaction between the mechanical system and electrical system is analyzed. On this basis, a harmonic torque reduction strategy for an IEDS is proposed in this paper. The simulation results show that the proposed strategy can effectively reduce the harmonic torque of the motor and reduce the speed fluctuation and dynamic load of the system components, which can improve the stability of the IEDS and prolong the life of the mechanical components.


2019 ◽  
Vol 2 (1) ◽  
pp. 96-103
Author(s):  
Krzysztof Kotwica ◽  
Grzegorz Stopka

Abstract The article presents methodology and selected results of simulation tests of diesel and electric dive system for drilling rig. Research in this field were conducted under the project no. POIR.01.01.01-00-D011/16 entitled „New generation of modular rigs, drilling and bolting, with battery drives, designated to work in underground cooper ore and raw rock material mines”. The project is funded by the National Center of Research and Development (NCBiR). The aim of the project is to design and implementation of innovation drilling and bolting rig with electric drive system. Due to the complexity of the structure of the drive system (mechanical, hydraulic and electrical elements), it was necessary to use advanced simulation software dedicated to multiphysics analysis. Data presented in the article can be used as guidelines in design process of drilling and bolting rigs as well as in optimization their driving system and mechanical construction.


Sign in / Sign up

Export Citation Format

Share Document