Adaptive inverse control for nonlinear systems based on RBF neural network

Author(s):  
Zhuo Wang ◽  
Ping Li ◽  
Shuo Guo
2013 ◽  
Vol 389 ◽  
pp. 623-631 ◽  
Author(s):  
Xiu Yan Wang ◽  
Ying Wang ◽  
Zong Shuai Li

For the flight control problem occurred in 3-DOF Helicopter System, reference adaptive inverse control scheme based on Fuzzy Neural Network model is designed. Firstly, fuzzy inference process of identifier and controller is achieved by using the network structure. Meanwhile, the neural network connection weights are used to express parameters of fuzzy inference. Then, back-propagation algorithm is adopted to amend the network connection weights in order to automatically identify the fuzzy model and adjust its membership functions and parameters, so that the actual system output of adaptive inverse controller control which is adjusted can track the reference model output. Finally, the simulation result of 3-DOF Helicopter System based on the scheme shows that the method is effective and feasible.


2011 ◽  
Vol 17 (13) ◽  
pp. 2007-2014 ◽  
Author(s):  
Jianjun Yao ◽  
Xiancheng Wang ◽  
Shenghai Hu ◽  
Wei Fu

Based on adaptive inverse control theory, combined with neural network, neural network adaptive inverse controller is developed and applied to an electro-hydraulic servo system. The system inverse model identifier is constructed by neural network. The task is accomplished by generating a tracking error between the input command signal and the system response. The weights of the neural network are updated by the error signal in such a way that the error is minimized in the sense of mean square using (LMS) algorithm and the neural network is close to the system inverse model. The above steps make the gain of the serial connection system close to unity, realizing waveform replication function in real-time. To enhance its convergence and robustness, the normalized LMS algorithm is applied. Simulation in which nonlinear dead-zone is considered and experimental results demonstrate that the proposed control scheme is capable of tracking desired signals with high accuracy and it has good real-time performance.


2018 ◽  
Vol 214 ◽  
pp. 03005
Author(s):  
Haibo Zhao ◽  
Chengguang Wang

There are many control methods for nonlinear systems, but some of them can not control nonlinear mismatched systems very well. Backstepping control has obvious advantages in controlling nonlinear mismatched systems. Thus we proposed a new radial-basis-function (RBF) neural network-based backstepping adaptive controller combining RBF neural network (RBF NN) and backstepping control for a class of nonlinear mismatched systems. We adopted RBF NN to approximate the system uncertainty. And we analyzed the controller stability using Lyapunov stability theory. Finally we chose sine signal as simulation input signal, simulation results show that the proposed control strategy has better adaptive ability and robustness than PID control, validating the effectivess of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document