An Optimal Color Image Fusion Approach Based on Quantitative Evaluation Indexes

Author(s):  
Gang Xiao ◽  
Jianmin Wu ◽  
Zhongliang Jing
2021 ◽  
pp. 014459872110102
Author(s):  
Lu Weiyong ◽  
He Changchun

To better evaluate the spatial steering effect of directional perforation hydraulic fractures, evaluation indexes for the spatial steering effect are first proposed in this paper. Then, these indexes are used to quantitatively evaluate existing physical experimental results. Finally, with the help of RFPA2D-Flow software, the influence of perforation length and azimuth on the spatial steering process of hydraulic fracture are quantitatively analysed using four evaluation indexes. It is shown by the results that the spatial deflection trajectory, deflection distance, deflection angle and initiation pressure of hydraulic fractures can be used as quantitative evaluation indexes for the spatial steering effect of hydraulic fractures. The deflection paths of directional perforation hydraulic fractures are basically the same. They all gradually deflect to the maximum horizontal principal stress direction from the perforation hole and finally represent a double-wing bending fracture. The deflection distance, deflection angle and initiation pressure of hydraulic fractures increase gradually with increasing perforation azimuth, and the sensitivity of the deflection angle to the perforation azimuth of hydraulic fractures also increases. With increasing perforation length, the deflection distance of hydraulic fractures increases gradually. However, the deflection angle and initiation pressure decrease gradually, as does the sensitivity.


2014 ◽  
Vol 14 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Yong Yang ◽  
Shuying Huang ◽  
Junfeng Gao ◽  
Zhongsheng Qian

Abstract In this paper, by considering the main objective of multi-focus image fusion and the physical meaning of wavelet coefficients, a discrete wavelet transform (DWT) based fusion technique with a novel coefficients selection algorithm is presented. After the source images are decomposed by DWT, two different window-based fusion rules are separately employed to combine the low frequency and high frequency coefficients. In the method, the coefficients in the low frequency domain with maximum sharpness focus measure are selected as coefficients of the fused image, and a maximum neighboring energy based fusion scheme is proposed to select high frequency sub-bands coefficients. In order to guarantee the homogeneity of the resultant fused image, a consistency verification procedure is applied to the combined coefficients. The performance assessment of the proposed method was conducted in both synthetic and real multi-focus images. Experimental results demonstrate that the proposed method can achieve better visual quality and objective evaluation indexes than several existing fusion methods, thus being an effective multi-focus image fusion method.


1997 ◽  
Author(s):  
Mucahit K. Uner ◽  
Liane C. Ramac ◽  
Pramod K. Varshney ◽  
Mark G. Alford

2016 ◽  
Author(s):  
Chao Liu ◽  
Xiao-hui Zhang ◽  
Qing-ping Hu ◽  
Yong-kang Chen

Sign in / Sign up

Export Citation Format

Share Document