Analysis of Energy Consumption for Multiple Object Identification System with Active RFID Tags

Author(s):  
Xu Su ◽  
Yang Xiao
2008 ◽  
Vol 3 (1) ◽  
pp. 106-115 ◽  
Author(s):  
Ting Zhang ◽  
Yuanxin Ouyang ◽  
Yang He

The RFID is not only a feasible, novel, and cost-effective candidate for daily object identification but it is also considered as a significant tool to provide traceable visibility along different stages of the aviation supply chain. In the air baggage handing application, the RFID tags are used to enhance the ability for baggage tracking, dispatching and conveyance so as to improve the management efficiency and the users’ satisfaction. We surveyed current related work and introduce the IATA RP1740c protocol used for the standard to recognize the baggage tags. One distributed aviation baggage traceable application is designed based on the RFID networks. We describe the RFID-based baggage tracking experiment in the BCIA (Beijing Capital International Airport). In this experiment the tags are sealed in the printed baggage label and the RFID readers are fixed in the certain interested positions of the BHS in the Terminal 2. We measure the accurate recognition rate and monitor the baggage’s real-time situation on the monitor’s screen. Through the analysis of the measured results within two months we emphasize the advantage of the adoption of RFID tags in this high noisy BHS environment. The economical benefits achieved by the extensive deployment of RFID in the baggage handing system are also outlined.


RFID Handbook ◽  
2008 ◽  
Author(s):  
Mun Ng ◽  
Kin Leong ◽  
Peter Cole

Author(s):  
V. K. Zheleznyak ◽  
V. B. Tolubko ◽  
L. P. Kriuchkova ◽  
A. P. Provozin

In the work the technology of radio-frequency identification of objects with inductive coupling is considered, using passive electric oscillating circuits tuned to fixed frequencies from the working frequency range as identification features of the object. The choice of the primary measuring transducer and the informative parameter is based on the results of the analysis of the system of inductively coupled active and passive electric oscillation circuits, known from the theory of radio engineering circuits. The parameters of the measuring transducer ensuring the fulfillment of the requirements for identification and localization of objects specified by technological conditions are substantiated. Factors that are potentially dangerous with respect to reducing the information reliability of the measuring transducer are considered, as well as the possibility of reducing their influence to a minimum. The problems of experimental research are formulated. It is shown that the analysis can be performed by software discrete adjustment of the primary measuring transducer and the generator feeding it. In this case, the task of increasing the speed is targeted at decreasing the duration of the step of tuning the primary measuring transducer. The required reliability of object identification is achieved by: ensuring high stability of the frequencies of the generator supplying the primary measuring transducer; accuracy and stability of tuning of the primary measuring transducer to the frequencies of the supplying generator; protection of the primary measuring transducer from the influence of interference generated by external sources and other measuring converters of the object identification system (electromagnetic compatibility of the object identification system); sufficient magnitude of the response of the primary measuring transducer to the introduction of passive electrical oscillation circuits; sufficient frequency tuning interval for passive electric oscillation circuits; accuracy and stability of tuning of passive electric oscillation circuits; stability of the detection threshold relative to the initial level of the informative parameter. Electromagnetic compatibility of measuring transducers, whose sensing elements are in the zone of mutual influence, is provided by synchronizing the operation of measuring transducers with shunting of inactive sensors, screening, mutual orientation and spacing of sensing elements.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4225
Author(s):  
Bartosz Pawłowicz ◽  
Bartosz Trybus ◽  
Mateusz Salach ◽  
Piotr Jankowski-Mihułowicz

The paper covers the application of Radio Frequency IDentification (RFID) technology in road traffic management with regard to vehicle identification. Various infrastructure configurations for Automated Vehicle Identification (AVI) have been presented, including configurations that can be used in urban traffic as part of the Smart City concept. In order to describe the behavior of multiple identifications of moving vehicles, an operation model of the dynamic identification using RFID is described. While it extends the definition of the correct work zone, this paper introduces the concept of dividing the zone into sections corresponding to so-called inventory rounds. The system state is described using a set of matrices in which unread, read, and lost transponders are recorded in subsequent rounds and sections. A simplified algorithm of the dynamic object identification system was also proposed. The results of the simulations and lab experiments show that the efficiency of mobile object identification is conditioned by the parameters of the communication protocol, the speed of movement, and the number of objects.


2020 ◽  
Vol 10 (7) ◽  
pp. 2468
Author(s):  
Lorenzo J. Tardón ◽  
Isabel Barbancho ◽  
Ana M. Barbancho ◽  
Ichiro Fujinaga

The automatic analysis of scores has been a research topic of interest for the last few decades and still is since music databases that include musical scores are currently being created to make musical content available to the public, including scores of ancient music. For the correct analysis of music elements and their interpretation, the identification of staff lines is of key importance. In this paper, a scheme to post-process the output of a previous musical object identification system is described. This system allows the reconstruction by means of detection, tracking and interpolation of the staff lines of ancient scores from the digital Salzinnes Database. The scheme developed shows a remarkable performance on the specific task it was created for.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4392 ◽  
Author(s):  
Mariusz Węglarski ◽  
Piotr Jankowski-Mihułowicz

A general view on the problem of designing atypical battery-free, autonomous semi-passive RFID transponders-sensors (autonomous sensors with RFID interfaces) is presented in this review. Although RFID devices can be created in any of the electronic technologies, the design stage must be repeated each time when the manufacturing processes are changed, and their specific conditions have to be taken into consideration when modeling new solutions. Aspects related to the factors affecting the synthesis of semi-passive RFID transponder components on the basis of which the idea of the autonomous RFID sensor was developed are reflected in the paper. Besides their general characteristics, the operation conditions of modern RFID systems and achievements in autonomous RFID sensor technology are revealed in subsequent sections—they include such issues as technological aspects of the synthesis process, designing antennas for RFID transponders, determining RFID chip and antenna parameters, creating the interrogation zone IZ, etc. It should be pointed that the universal construction of an autonomous RFID sensor, which could be use in any application of the automatic object identification system, cannot be developed according to the current state of the art. Moreover, a trial and error method is the most commonly used in the today’s process of designing new solutions, and the basic parameters are estimated on the basis of the tests and the research team experience. Therefore, it is necessary to look for new inventions and methods in order to improve implementations of RFID systems.


Sign in / Sign up

Export Citation Format

Share Document