scholarly journals Dynamic RFID Identification in Urban Traffic Management Systems

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4225
Author(s):  
Bartosz Pawłowicz ◽  
Bartosz Trybus ◽  
Mateusz Salach ◽  
Piotr Jankowski-Mihułowicz

The paper covers the application of Radio Frequency IDentification (RFID) technology in road traffic management with regard to vehicle identification. Various infrastructure configurations for Automated Vehicle Identification (AVI) have been presented, including configurations that can be used in urban traffic as part of the Smart City concept. In order to describe the behavior of multiple identifications of moving vehicles, an operation model of the dynamic identification using RFID is described. While it extends the definition of the correct work zone, this paper introduces the concept of dividing the zone into sections corresponding to so-called inventory rounds. The system state is described using a set of matrices in which unread, read, and lost transponders are recorded in subsequent rounds and sections. A simplified algorithm of the dynamic object identification system was also proposed. The results of the simulations and lab experiments show that the efficiency of mobile object identification is conditioned by the parameters of the communication protocol, the speed of movement, and the number of objects.

Author(s):  
Q. Li ◽  
X. Hao ◽  
W. Wang ◽  
A. Wu ◽  
Z. Xie

The adverse weather may significantly impact urban traffic speed and travel time. Understanding the influence of the rainstorm to urban traffic speed is of great importance for traffic management under stormy weather. This study aims to investigate the impact of rainfall intensity on traffic speed in the Shenzhen (China) during the period 1 July 2015–31 August 2016. The analysis was carried out for five 1-h periods on weekdays during the morning periods (6:00 AM–11:00 AM). Taxi-enabled GPS tracking data obtained from Shenzhen city are used in the analysis. There are several findings in this study. Firstly, nearly half of the roads are significantly affected by the rainstorm. Secondly, the proportion of positive correlated roads is about 35 %, but there still are some roads with uncorrelated traffic speed variation rates (SVR) and rainfall intensities. Thirdly, the impact of the rainstorm on traffic speed is not homogeneous but with obvious spatial difference. This research provides useful information that can be used in traffic management on a city-wide scale under stormy weather.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6220
Author(s):  
Cosmina Corches ◽  
Mihai Daraban ◽  
Liviu Miclea

Through the latest technological and conceptual developments, the centralized cloud-computing approach has moved to structures such as edge, fog, and the Internet of Things (IoT), approaching end users. As mobile network operators (MNOs) implement the new 5G standards, enterprise computing function shifts to the edge. In parallel to interconnection topics, there is the issue of global impact over the environment. The idea is to develop IoT devices to eliminate the greenhouse effect of current applications. Radio-frequency identification (RFID) is the technology that has this potential, and it can be used in applications ranging from identifying a person to granting access in a building. Past studies have focused on how to improve RFID communication or to achieve maximal throughput. However, for many applications, system latency and availability are critical aspects. This paper examines, through stochastic Petri nets (SPNs), the availability, dependability, and latency of an object-identification system that uses RFID tags. Through the performed analysis, the optimal balance between latency and throughput was identified. Analyzing multiple communication scenarios revealed the availability of such a system when deployed at the edge layer.


2011 ◽  
Vol 105-107 ◽  
pp. 2250-2254
Author(s):  
Xin Sheng Yao ◽  
Jian Hua Qu ◽  
Ji Lai Ying

This paper describes a prototype system based on floating taxi for traffic condition identification. The system consists of in-vehicle hardware units placed in floating taxi and backstage database that process all data send from the report units. The communication between the taxi and the database center is based on a very compact wireless communication protocol. The taxi sample size is decided by the variables: section traffic information update cycle, data sampling interval, section covering ratio. The test in a road section showed that the system is operational which could offer useful reference for urban traffic management and resident trips decision.


2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Yuan Lu ◽  
Shengyong Yao ◽  
Yifeng Yao

Congestion and complexity in the field of highway transportation have risen steadily in recent years, particularly because the growth rate of vehicles has far outpaced the growth rate of roads and other transportation facilities. To ensure smooth traffic, reduce traffic congestion, improve road safety, and reduce the negative impact of air pollution on the environment, an increasing number of traffic management departments are turning to new scientifically developed technology. The urban road traffic is simulated by nodes and sidelines in this study, which is combined with graph theory, and the information of real-time changes of road traffic is added to display and calculate the relevant data and parameters in the road. On this foundation, the dynamic path optimization algorithm model is discussed in the context of high informationization. Although the improved algorithm’s optimal path may not be the conventional shortest path, its actual travel time is the shortest, which is more in line with users’ actual travel needs to a large extent.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1476
Author(s):  
Francesco Leccese ◽  
Davide Lista ◽  
Giacomo Salvadori ◽  
Marco Beccali ◽  
Marina Bonomolo

Street lighting plays a crucial role in a city’s night landscape and in urban traffic management, influencing users’ comfort and safety. To contain costs of public street lighting systems and to avoid energy waste, illuminance levels on road surfaces must be adequate to fit actual traffic volumes, as prescribed by regulations. This is true not only for motorized roads but also for sidewalks, paths, and pedestrian areas. Regulations in force establish a relationship between road traffic volumes and minimum illuminance levels through the lighting classes selection procedure. Lighting classes selection is based on various para meters among which traffic volume is the most difficult to evaluate because traffic volumes are generally estimated or measured by a traffic observation campaign. In this paper, an alternative method for classes association which is based on a space syntax approach, is described. The method was applied to the case study town of Pontedera (Italy) for the analysis of the pedestrian and motorized traffic and it shows a good correlation between measured and estimated traffic volumes, demonstrating how the methodology, with a precise and quick estimation of traffic volumes, can help lead to a suitable design of the lighting infrastructure, aiming to reduce energy waste and to avoid oversized lighting systems.


Author(s):  
Thomas L. McCluskey ◽  
Mauro Vallati ◽  
Santiago Franco

The global growth in urbanisation increases the demand for services including road transport infrastructure, presenting challenges in terms of mobility. Optimising the exploitation of urban road network, while attempting to minimise the effects of traffic emissions, is a great challenge. SimplyfAI was a UK research council grant funded project which was aimed towards solving air quality problems caused by road traffic emissions. Large cities such as Manchester struggle to meet air quality limits as the range of available traffic management devices is limited. In the study, we investigated the application of linked data to enrich environmental and traffic data feeds, and we used this with automated planning tools to enable traffic to be managed at a region level. The management will have the aim of avoiding air pollution problems before they occur. This demo focuses on the planning component, and in particular the engineering and validation aspects, that were pivotal for the success of the project.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8066
Author(s):  
Andrzej Paszkiewicz ◽  
Bartosz Pawłowicz ◽  
Bartosz Trybus ◽  
Mateusz Salach

This article deals with automated urban traffic management, and proposes a new comprehensive infrastructure solution for dynamic traffic direction switching at intersection lines. It was assumed that the currently used solutions based on video monitoring are unreliable. Therefore, the Radio Frequency IDentification (RFID) technique was introduced, in which vehicles are counted and, if necessary, identified in order to estimate the flows on individual lanes. The data is acquired in real time using fifth-generation wireless communications (5G). The Pots and Ising models derived from the theory of statistical physics were used in a novel way to determine the state of direction traffic lights. The models were verified by simulations using data collected from real traffic observations. The results were presented for two exemplary intersections.


2010 ◽  
Vol 11 (4) ◽  
pp. 498-504
Author(s):  
Feng WU ◽  
Jinyan ZHAN ◽  
Xiangzheng DENG ◽  
Nana SHI

Sign in / Sign up

Export Citation Format

Share Document