A chemical kinetic analysis of the formation of CuInSe/sub 2/ at different temperatures [solar cell modules]

Author(s):  
T.W.F. Russell ◽  
N. Orbey ◽  
R.W. Birkmire
Author(s):  
Daisuke Murahara ◽  
Wataru Shimizu ◽  
Hidehisa Kubota ◽  
Tamiko Oda ◽  
Kazuhiro Yabe

Abstract We have developed a process diagnostics system for photovoltaic energy modules based on standard methods and practices already developed for LSI and MEMS technologies. This paper provides a description of methods used to ensure the conformation of solar cell modules to the rigors of high-quality manufacturing necessary for reliable photovoltaic energy production when exposed to long-term environmental use. We have verified the possibility of inspecting each solar cell and the module assembly in detail for several photovoltaic technologies, specifically monocrystalline Si, polycrystalline Si, and CuInxGa1-xSe2 An objective set of criteria for the quality of each module can be provided by this method for use in module selection by consumers. Moreover, the quality of conformance and reliability data can be used as feedback to the manufacturer to minimize the number of defects created during manufacturing process and ameliorate their effects.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1228
Author(s):  
Xuwei Wang ◽  
Zhaojie Li ◽  
Yanlei Zhang

The stratospheric airship is a kind of aircraft that completely relies on the cycle of photovoltaic energy systems to achieve long duration flight. The accurate estimation of the operating temperature of solar cell modules on stratospheric airship is extremely important for the design of photovoltaics system (PV system), the output power calculation of PV system, and the calculation of energy balance. However, the related study has been rarely reported. A support vector machine prediction method based on particle swarm optimization algorithm (PSO-SVM) was established to predict the operating temperature of solar cell modules on stratospheric airship. The PSO algorithm was used to dynamically optimize the SVM’s parameters between the operating temperature of the solar cell modules and the measured data such as atmospheric pressure, solar radiation intensity, flight speed, and ambient temperature. The operating temperature data of the two sets of solar cell modules measured in the flight test were used to verify the accuracy of the temperature prediction model, and the prediction results were compared with a back propagation neural network (BPNN) method and the simulation results calculated by COMSOL Multiphysics of COMSOL, Inc., Columbus, MA, USA. The results shown that the PSO-SVM model realized the accurate prediction of the operating temperature of solar cell modules on stratospheric airship, which can guide the design of PV system, the output power calculation of PV system, and the calculation of energy balance.


2021 ◽  
Vol 13 (4) ◽  
pp. 2086
Author(s):  
Bartłomiej Milewicz ◽  
Magdalena Bogacka ◽  
Krzysztof Pikoń

The methods of production of electricity from renewable sources are currently highly researched topics. The reason for this is growing social awareness regarding the environmental impact of traditional energy technologies. The main aim of this study is to describe the results of using silicon cell technology and dye concentrator in a single system. The experiment presented in the paper was conducted in a laboratory environment using a dye concentrator in the form of tinted and luminescent acrylic glass (polymethyl methacrylate, PMMA). The experiment was conducted using a few measurement calibrations for the described system, such as different temperatures of the researched silicon cell or different intensity of illuminance from a solar simulator. The results of the experiment showed increase in the performance of the solar cell between 0.05% and 1.42% depending on the pigments used in the concentrator. The highest results were achieved for luminescent red PMMA and on average the improvement was 1.21%. This shows us the potential for the implementation of a luminescent dye concentrator in solar electric technology.


Author(s):  
Jun Zhu ◽  
Seulyoung Park ◽  
Oh Yeong Gong ◽  
ChangHwun Sohn ◽  
Zijia Li ◽  
...  

A large FAS2+ ion in FAPbI3 scavenges localized electrons in defects, leading to perovskite solar cell module with remarkable performance values of 18.76% (25.74 cm2) and 15.87% (65.22 cm2), respectively.


Author(s):  
G. Arvind Rao ◽  
Yeshayahou Levy ◽  
Ephraim J. Gutmark

Flameless combustion (FC) is one of the most promising techniques of reducing harmful emissions from combustion systems. FC is a combustion phenomenon that takes place at low O2 concentration and high inlet reactant temperature. This unique combination results in a distributed combustion regime with a lower adiabatic flame temperature. The paper focuses on investigating the chemical kinetics of an prototype combustion chamber built at the university of Cincinnati with an aim of establishing flameless regime and demonstrating the applicability of FC to gas turbine engines. A Chemical reactor model (CRM) has been built for emulating the reactions within the combustor. The entire combustion chamber has been divided into appropriate number of Perfectly Stirred Reactors (PSRs) and Plug Flow Reactors (PFRs). The interconnections between these reactors and the residence times of these reactors are based on the PIV studies of the combustor flow field. The CRM model has then been used to predict the combustor emission profile for various equivalence ratios. The results obtained from CRM model show that the emission from the combustor are quite less at low equivalence ratios and have been found to be in reasonable agreement with experimental observations. The chemical kinetic analysis gives an insight on the role of vitiated combustion gases in suppressing the formation of pollutants within the combustion process.


2020 ◽  
Vol 12 (06) ◽  
pp. 375-395
Author(s):  
Masafumi Yamaguchi ◽  
Taizo Masuda ◽  
Kenji Araki ◽  
Daisuke Sato ◽  
Kan-Hua Lee ◽  
...  

2013 ◽  
Vol 38 ◽  
pp. 86-93 ◽  
Author(s):  
Hendrik Holst ◽  
Matthias Winter ◽  
Malte R. Vogt ◽  
Karsten Bothe ◽  
Marc Köntges ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document