The Internet of Things for Intelligent Transportation Systems in Real Smart Cities Scenarios

Author(s):  
Alberto Attilio Brincat ◽  
Federico Pacifici ◽  
Stefano Martinaglia ◽  
Francesco Mazzola
Author(s):  
Bruno Pereira Santos ◽  
Luiz Filipe Menezes Vieira ◽  
Antonio Alfredo Ferreira Loureiro

This Ph.D. Thesis proposes new techniques for routing and mobility management for Internet of Things (IoT). In the future IoT, everyday mobile objects will probably be connected to the Internet. Currently, static IoT's devices have already been connected, but handle mobile devices suitably still being an open issue in IoT context. Then, solutions for routing mobility detection, handover, and mobility management are proposed through an algorithm that integrates Machine Learning (ML) and mobility metrics to figure out devices' mobility events, which we named Dribble. Also, an IPv6 hierarchical routing protocol named Mobile Matrix to boost efficient (memory and fault tolerance) end-to-end connectivity over mobility scenarios. The Thesis contributions are supported by numerous peer-reviewed publications in national and international conferences and journals included in ISI-JCR. Also, the applicability of this Thesis is evident by showing that our results overcome state-of-the-art in static and mobile scenarios, as well as, the impact of the proposed solutions is a step forward in at least two new research areas so-called Internet of Mobile Things (IoMT) and Social IoT, where devices move around and do social ties respectively. Moreover, during the Ph.D. degree, the author has contributed to different computer network fields rather than routing by publishing in areas like social networks, smart cities, intelligent transportation systems, software-defined networks, and parallel computing.


2020 ◽  
Vol 12 (4) ◽  
pp. 63
Author(s):  
Nishu Gupta ◽  
Ravikanti Manaswini ◽  
Bongaram Saikrishna ◽  
Francisco Silva ◽  
Ariel Teles

The amalgamation of Vehicular Ad hoc Network (VANET) with the Internet of Things (IoT) leads to the concept of the Internet of Vehicles (IoV). IoV forms a solid backbone for Intelligent Transportation Systems (ITS), which paves the way for technologies that better explain about traffic efficiency and their management applications. IoV architecture is seen as a big player in different areas such as the automobile industry, research organizations, smart cities and intelligent transportation for various commercial and scientific applications. However, as VANET is vulnerable to various types of security attacks, the IoV structure should ensure security and efficient performance for vehicular communications. To address these issues, in this article, an authentication-based protocol (A-MAC) for smart vehicular communication is proposed along with a novel framework towards an IoV architecture model. The scheme requires hash operations and uses cryptographic concepts to transfer messages between vehicles to maintain the required security. Performance evaluation helps analyzing its strength in withstanding various types of security attacks. Simulation results demonstrate that A-MAC outshines other protocols in terms of communication cost, execution time, storage cost, and overhead.


2021 ◽  
Vol 28 (1) ◽  
pp. 31-39
Author(s):  
Izdihar Shaleesh ◽  
Akram Almohammedi ◽  
Naji Mohammad ◽  
Ali Ahmad ◽  
Vladimir Shepelev

With increase in the population, the number of registered vehicles has dramatically increased over all the world, and this leads to a high rate of traffic accidents on the roads. Therefore, in order to prevent such accidents, an Intelligent Transportation Systems (ITSs) is needed to be installed to notify drivers of obstacles in advance. Recently, the Internet of things (IoT) evolves the vehicular communications and covers this technology under the Internet of vehicles (IoV) application. IoV is a new field for the automotive industry and a significant part of the smart cities. However, protecting the privacy of vehicle's location is the most challenging subject in the vehicular communication, as because it threatens the personal life of drivers. This paper provides cooperation and radio silence strategy in mix zone (CRSMZ) to protect location privacy of vehicle in IoV. The strategy implements either cooperation or radio silence depending on the speed of the vehicle while it is in mix _zone. The simulation results show that CRSMZ is an efficient strategy to protect location information of vehicle drivers. CRSMZ outperforms the existing strategies in terms of mean of the number tracker confusion, continuous tracking period and max of the entropy.


Author(s):  
Wendy W. Fok ◽  

Minerva Tantoco was named New York City’s first chief technology officer last year, charged with developing a coordinated citywide strategy on technology and innovation. We’re likely to see more of that as cities around the country, and around the world, consider how best to use innovation and technology to operate as “smart cities.”The work has major implications for energy use and sustainability, as cities take advantage of available, real-time data – from ‘smart’ phones, computers, traffic monitoring, and even weather patterns — to shift the way in which heating and cooling systems, landscaping, flow of people through cities, and other pieces of urban life are controlled. But harnessing Open Innovation and the Internet of Things can promote sustainability on a much broader and deeper scale. The question is, how do you use all the available data to create a more environmentally sound future? The term “Internet of Things” was coined in 1999 by Kevin Ashton, who at the time was a brand manager trying to find a better way to track inventory. His idea? Put a microchip on the packaging to let stores know what was on the shelves.


2021 ◽  
Vol 03 (01) ◽  
pp. 33-41
Author(s):  
Vittorio Astarita ◽  
Vincenzo Pasquale Giofrè ◽  
Giuseppe Guido ◽  
Alessandro Vitale

This paper intends to explore the convergence of some technological innovations that could lead to new cooperative Intelligent Transportation Systems (ITS). The technologies that might soon converge and lead to some new developments are: the Blockchain Technology (BT) concept, Internet of Things (IoT) and Connected and Automated Vehicles (CAV). Advantages and disadvantages of the new concepts founding a new ITS system are discussed in this conceptual paper. Blockchain technology has been recently introduced and many research ideas have been presented for application in the transportation sector. In this paper, we discuss a system that is based on a dedicated blockchain, able to involve both drivers and city administrations in the adoption of promising and innovative technologies that will create cooperation among connected vehicles. The proposed blockchain-based system can allow city administrators to reward drivers when they are willing to share travel data. The system manages in a special way the creation of rewards which are assigned to drivers and institutions participating actively in the system. Moreover, the system allows keeping a complete track of all transactions and interactions between drivers and city management on a completely open and shared platform. The main idea is to combine connected vehicles with BT to promote Cooperative ITS use, a better use of infrastructures and a more sustainable eco-system of cryptocurrencies. A short description of BT is introduced to evidence energy problems of sustainability in the implementation of Proof of Work (PoW) that is adopted by many blockchains.


Sign in / Sign up

Export Citation Format

Share Document