Using texture and fractal analysis for classification of cell nuclei from light scattering spectroscopic images

Author(s):  
Radu Dobrescu ◽  
Matei Dobrescu ◽  
Loretta Ichim
Author(s):  
Mubashir Hussain ◽  
Xiaolong Liu ◽  
Jun Zou ◽  
Jian Yang ◽  
Zeeshan Ali ◽  
...  

2004 ◽  
Vol 26 (3) ◽  
pp. 125-134
Author(s):  
Armin Gerger ◽  
Patrick Bergthaler ◽  
Josef Smolle

Aims. In tissue counter analysis (TCA) digital images of complex histologic sections are dissected into elements of equal size and shape, and digital information comprising grey level, colour and texture features is calculated for each element. In this study we assessed the feasibility of TCA for the quantitative description of amount and also of distribution of immunostained material. Methods. In a first step, our system was trained for differentiating between background and tissue on the one hand and between immunopositive and so‐called other tissue on the other. In a second step, immunostained slides were automatically screened and the procedure was tested for the quantitative description of amount of cytokeratin (CK) and leukocyte common antigen (LCA) immunopositive structures. Additionally, fractal analysis was applied to all cases describing the architectural distribution of immunostained material. Results. The procedure yielded reproducible assessments of the relative amounts of immunopositive tissue components when the number and percentage of CK and LCA stained structures was assessed. Furthermore, a reliable classification of immunopositive patterns was found by means of fractal dimensionality. Conclusions. Tissue counter analysis combined with classification trees and fractal analysis is a fully automated and reproducible approach for the quantitative description in immunohistology.


2011 ◽  
Vol 20 (4) ◽  
pp. 1011-1022 ◽  
Author(s):  
Il-Han Kim ◽  
Yi-Chun M. Chen ◽  
David L. Spector ◽  
Roland Eils ◽  
Karl Rohr

2018 ◽  
Vol 8 (9) ◽  
pp. 1608 ◽  
Author(s):  
Khin Win ◽  
Somsak Choomchuay ◽  
Kazuhiko Hamamoto ◽  
Manasanan Raveesunthornkiat

Due to the close resemblance between overlapping and cancerous nuclei, the misinterpretation of overlapping nuclei can affect the final decision of cancer cell detection. Thus, it is essential to detect overlapping nuclei and distinguish them from single ones for subsequent quantitative analyses. This paper presents a method for the automated detection and classification of overlapping nuclei from single nuclei appearing in cytology pleural effusion (CPE) images. The proposed system is comprised of three steps: nuclei candidate extraction, dominant feature extraction, and classification of single and overlapping nuclei. A maximum entropy thresholding method complemented by image enhancement and post-processing was employed for nuclei candidate extraction. For feature extraction, a new combination of 16 geometrical and 10 textural features was extracted from each nucleus region. A double-strategy random forest was performed as an ensemble feature selector to select the most relevant features, and an ensemble classifier to differentiate between overlapping nuclei and single ones using selected features. The proposed method was evaluated on 4000 nuclei from CPE images using various performance metrics. The results were 96.6% sensitivity, 98.7% specificity, 92.7% precision, 94.6% F1 score, 98.4% accuracy, 97.6% G-mean, and 99% area under curve. The computation time required to run the entire algorithm was just 5.17 s. The experiment results demonstrate that the proposed algorithm yields a superior performance to previous studies and other classifiers. The proposed algorithm can serve as a new supportive tool in the automated diagnosis of cancer cells from cytology images.


Sign in / Sign up

Export Citation Format

Share Document