Research on Simulation Method of Radar Clutter Suppression for Large Scale Air Defense and Antimissile Simulation System

Author(s):  
Yong Yang ◽  
Feng Zhao ◽  
Wen-ming Zhang ◽  
Shun-ping Xiao
2017 ◽  
Vol 28 (10) ◽  
pp. 1750126 ◽  
Author(s):  
Yutong Liu ◽  
Chengxuan Cao ◽  
Yaling Zhou ◽  
Ziyan Feng

In this paper, an improved real-time control model based on the discrete-time method is constructed to control and simulate the movement of high-speed trains on large-scale rail network. The constraints of acceleration and deceleration are introduced in this model, and a more reasonable definition of the minimal headway is also presented. Considering the complicated rail traffic environment in practice, we propose a set of sound operational strategies to excellently control traffic flow on rail network under various conditions. Several simulation experiments with different parameter combinations are conducted to verify the effectiveness of the control simulation method. The experimental results are similar to realistic environment and some characteristics of rail traffic flow are also investigated, especially the impact of stochastic disturbances and the minimal headway on the rail traffic flow on large-scale rail network, which can better assist dispatchers in analysis and decision-making. Meanwhile, experimental results also demonstrate that the proposed control simulation method can be in real-time control of traffic flow for high-speed trains not only on the simple rail line, but also on the complicated large-scale network such as China’s high-speed rail network and serve as a tool of simulating the traffic flow on large-scale rail network to study the characteristics of rail traffic flow.


2017 ◽  
Vol 34 (5) ◽  
pp. 1551-1571 ◽  
Author(s):  
Ming Xia

Purpose The main purpose of this paper is to present a comprehensive upscale theory of the thermo-mechanical coupling particle simulation for three-dimensional (3D) large-scale non-isothermal problems, so that a small 3D length-scale particle model can exactly reproduce the same mechanical and thermal results with that of a large 3D length-scale one. Design/methodology/approach The objective is achieved by following the scaling methodology proposed by Feng and Owen (2014). Findings After four basic physical quantities and their similarity-ratios are chosen, the derived quantities and its similarity-ratios can be derived from its dimensions. As the proposed comprehensive 3D upscale theory contains five similarity criteria, it reveals the intrinsic relationship between the particle-simulation solution obtained from a small 3D length-scale (e.g. a laboratory length-scale) model and that obtained from a large 3D length-scale (e.g. a geological length-scale) one. The scale invariance of the 3D interaction law in the thermo-mechanical coupled particle model is examined. The proposed 3D upscale theory is tested through two typical examples. Finally, a practical application example of 3D transient heat flow in a solid with constant heat flux is given to illustrate the performance of the proposed 3D upscale theory in the thermo-mechanical coupling particle simulation of 3D large-scale non-isothermal problems. Both the benchmark tests and application example are provided to demonstrate the correctness and usefulness of the proposed 3D upscale theory for simulating 3D non-isothermal problems using the particle simulation method. Originality/value The paper provides some important theoretical guidance to modeling 3D large-scale non-isothermal problems at both the engineering length-scale (i.e. the meter-scale) and the geological length-scale (i.e. the kilometer-scale) using the particle simulation method directly.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Xin Wang ◽  
Jianhua Zhang ◽  
Massimo Scalia

This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.


Author(s):  
Fuhong Xie ◽  
Catie McEntee ◽  
Mingzhi Zhang ◽  
Ning Lu ◽  
Xinda Ke ◽  
...  

Author(s):  
M. Miyoshi ◽  
Y. Ooshima ◽  
A. Sugiyama ◽  
N. Onizuka ◽  
N. Amano

Author(s):  
Magda Foti ◽  
Manolis Vavalis

This paper has two aims. Firstly, to briefly present overall objectives and expected outcome of an on-going effort concerning design, implementation and the analysis of next generation energy systems based on anticipatory control and a set of ICT emerging technologies and innovations. Secondly, to describe an early proof-of-concept implementation and the associated experimentation of a simulation platform focused on holistic detailed studies of electric energy markets. The proposed platform allows us to elucidate issues related to the open and smart participation of producers and consumers on large-scale e-markets. Based on an existing simulation system, the authors present the required theoretical studies, the enabling technologies, and the practical tools that contribute to the development of such a platform capable of truly large scale simulations. Elements of game theory are utilized to solve the optimization problem related to the maximization of the social welfare of producers and consumers. Selected simulation results associated with the basic required characteristics are presented.


Sign in / Sign up

Export Citation Format

Share Document