The Distributed Platform for Geographic Information Service Based on ArcGIS Server and OGC

Author(s):  
Shiran Zhong
Author(s):  
J. Zhang ◽  
H. Zhang ◽  
C. Wang

TIANDITU (Map World) is the public version of the National Platform for Common Geospatial Information Service, and the travelling channel is TIANDITU-based geographic information platform for travelling service. With the development of tourism, traditional ways for providing travelling information cannot meet the needs of travelers. As such, the travelling channel of TIANDITU focuses on providing travel information abundantly and precisely, which integrated the geographic information data of TIANDITU Version 2.0 and the authoritative information resources from China National Tourism Administration. Furthermore, spatial positioning, category and information query of various travelling information were offered for the public in the travelling channel. This research mainly involves three important parts: the system design, key technologies of the system design and application examples. Firstly, this paper introduced the design of TIANDITU-based geographic information system for travelling service, and the general and database design were described in detail. The designs for general, database and travelling service above should consider lots of factors which illustrated in the paper in order to guarantee the efficient service. The process of system construction, the content of geographic information for travelling and system functions of geographic information for travelling are also proposed via diagram in this part. Then several key technologies were discussed, including the travelling information integration for main node and among nodes, general architecture design and management system for travelling channel, web portals and system interface. From the perspective of main technologies, this part describes how TIANDITU travelling channel can realize various functions and reach the requirements from different users. Finally, three application examples about travelling information query were listed shortly. The functions and search results are shown clearly in this part. In all, TIANDITU-based geographic information system for travelling service aimed to integrate the travelling information resources from national, provincial and municipal levels, and finally realized to provide "one stop" travelling service for users in the end.


2020 ◽  
Vol 9 (4) ◽  
pp. 194
Author(s):  
Wenqi Cui ◽  
Xin He ◽  
Meng Yao ◽  
Ziwei Wang ◽  
Jie Li ◽  
...  

When a landslide happens, it is important to recognize the hazard-affected bodies surrounding the landslide for the risk assessment and emergency rescue. In order to realize the recognition, the spatial relationship between landslides and other geographic objects such as residence, roads and schools needs to be defined. Comparing with semantic segmentation and instance segmentation that can only recognize the geographic objects separately, image captioning can provide richer semantic information including the spatial relationship among these objects. However, the traditional image captioning methods based on RNNs have two main shortcomings: the errors in the prediction process are often accumulated and the location of attention is not always accurate which would lead to misjudgment of risk. To handle these problems, a landslide image interpretation network based on a semantic gate and a bi-temporal long-short term memory network (SG-BiTLSTM) is proposed in this paper. In the SG-BiTLSTM architecture, a U-Net is employed as an encoder to extract features of the images and generate the mask maps of the landslides and other geographic objects. The decoder of this structure consists of two interactive long-short term memory networks (LSTMs) to describe the spatial relationship among these geographic objects so that to further determine the role of the classified geographic objects for identifying the hazard-affected bodies. The purpose of this research is to judge the hazard-affected bodies of the landslide (i.e., buildings and roads) through the SG-BiTLSTM network to provide geographic information support for emergency service. The remote sensing data was taken by Worldview satellite after the Wenchuan earthquake happened in 2008. The experimental results demonstrate that SG-BiTLSTM network shows remarkable improvements on the recognition of landslide and hazard-affected bodies, compared with the traditional LSTM (the Baseline Model), the BLEU1 of the SG-BiTLSTM is improved by 5.89%, the matching rate between the mask maps and the focus matrix of the attention is improved by 42.81%. In conclusion, the SG-BiTLSTM network can recognize landslides and the hazard-affected bodies simultaneously to provide basic geographic information service for emergency decision-making.


Author(s):  
Lin Hui ◽  
Ye Lei

The birth of mobile geographic information service (GIS) is introduced first, which is coming from the value-added service requirements in third generation (3G) telecommunications and functionally supported by geographic information system technologies. Then the history of mobile geographic services coming from mobile GIS (MGIS) is introduced. The present turning inside-out model of mobile geographic information service is discussed. The future developing trends of mobile geographic information services supported by ubiquitous computing research is proposed. The overview of mobile geographic information service is summarized in the conclusion, and the relationships and fusions between location-based services (LBS) and mobile geographic information services are discussed.


Sign in / Sign up

Export Citation Format

Share Document