Early termination belief propagation decoder with parity check matrix for polar codes

Author(s):  
Hsin-Fu Yu ◽  
Huang-Chang Lee ◽  
Shih-Kai Lee
Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 425
Author(s):  
Zhe Zhang ◽  
Liang Zhou ◽  
Zhi Heng Zhou

An effective way of improving decoding performance of an LDPC code is to extend the single-decoder decoding method to a parallel decoding method with multiple sub-decoders. To this end, this paper proposes a parallel decoding method for the LDPC codes constructed by m-sequence. In this method, the sub-decoders have two types. The first one contains only one decoding module using the original parity-check constraints to implement a belief propagation (BP) algorithm. The second one consists of a pre-decode module and a decoding module. The parity-check matrices for pre-decode modules are generated by the parity-check constraints of the sub-sequences sampled from an m-sequence. Then, the number of iterations of the BP process in each pre-decode module is set as half of the girth of the parity-check matrix, resulting in the elimination of the impact of short cycles. Using maximum a posterior (MAP), the least metric selector (LMS) finally picks out a codeword from the outputs of sub-decoders. Our simulation results show that the performance gain of the proposed parallel decoding method with five sub-decoders is about 0.4 dB, compared to the single-decoder decoding method at the bit error rate (BER) of 10−5.


2020 ◽  
Vol 174 (2) ◽  
pp. 137-165
Author(s):  
Nazanin Keshavarzian ◽  
Arsham Borumand Saeid ◽  
Abolfazl Tehranian

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 510 ◽  
Author(s):  
Mumtaz Ali ◽  
Huma Khan ◽  
Le Son ◽  
Florentin Smarandache ◽  
W. Kandasamy

In this paper, we design and develop a new class of linear algebraic codes defined as soft linear algebraic codes using soft sets. The advantage of using these codes is that they have the ability to transmit m-distinct messages to m-set of receivers simultaneously. The methods of generating and decoding these new classes of soft linear algebraic codes have been developed. The notion of soft canonical generator matrix, soft canonical parity check matrix, and soft syndrome are defined to aid in construction and decoding of these codes. Error detection and correction of these codes are developed and illustrated by an example.


Sign in / Sign up

Export Citation Format

Share Document