scholarly journals Tracking temperate fish reveals their relevance for plant seed dispersal

2021 ◽  
Author(s):  
Andrea J.E. Mulder ◽  
Roland van Aalderen ◽  
Casper H.A. van Leeuwen
2013 ◽  
Author(s):  
Katharine L. Stuble ◽  
Courtney M. Patterson ◽  
Mariano A. Rodriguez-Cabal ◽  
Relena R. Ribbons ◽  
Robert R. Dunn ◽  
...  

Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of the eastern US. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed removal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed.


2009 ◽  
Vol 28 (2) ◽  
pp. 191-205 ◽  
Author(s):  
S. Steyaert ◽  
J. Bokdam ◽  
W. Braakhekke ◽  
S. Findo

Plant Science ◽  
2014 ◽  
Vol 223 ◽  
pp. 124-133 ◽  
Author(s):  
Rivka Elbaum ◽  
Yael Abraham
Keyword(s):  

2019 ◽  
Author(s):  
Carine Emer ◽  
Pedro Jordano ◽  
Marco A. Pizo ◽  
Milton C. Ribeiro ◽  
Fernanda R. da Silva ◽  
...  

ABSTRACTSeed dispersal interactions involve key ecological processes in tropical forests that help to maintain ecosystem functioning. Yet this functionality may be threatened by increasing habitat loss, defaunation and fragmentation. However, generalist species, and their interactions, can benefit from the habitat change caused by human disturbance while more specialized interactions mostly disappear. Therefore changes in the structure of the local, within fragment, networks can be expected. Here we investigated how the structure of seed-dispersal networks changes along a gradient of increasing habitat fragmentation. We analysed 16 bird seed-dispersal assemblages from forest fragments of a biodiversity-rich ecosystem. We found significant species-, interaction- and network-area relationships, yet the later was determined by the number of species remaining in each community. The number of frugivorous bird and plant species, their interactions, and the number of links per species decreases as area is lost in the fragmented landscape. In contrast, network nestedness has a negative relationship with fragment area, suggesting an increasing generalization of the network structure in the gradient of fragmentation. Network specialization was not significantly affected by area, indicating that some network properties may be invariant to disturbance. Still, the local extinction of partner species, paralleled by a loss of interactions and specialist-specialist bird-plant seed dispersal associations suggests the functional homogenization of the system as area is lost. Our study provides empirical evidence for network-area relationships driven by the presence/absence of remnant species and the interactions they perform.RESUMOInterações de dispersão de sementes formam um processo ecológico chave em florestas tropicais onde colaboram na manutenção do funcionamento do ecossistema. Porém, esta funcionalidade pode estar ameaçada pelo aumento na perda e fragmentação do habitat. Enquanto espécies generalistas e suas interações podem se beneficiar da mudança de habitat causada por distúrbios antrópicos, interações envolvendo espécies mais especialistas são, na maioria, eliminadas. Desta forma, mudanças nas redes locais, dentro de fragmentos florestais, são esperadas. Neste trabalho nós investigamos como a estrutura de redes de dispersão de sementes mudam em um gradiente de fragmentação do habitat. Nós analisamos 16 comunidades de dispersão de sementes espacialmente explícitas e distribuídas em fragmentos florestais de um ecossistema rico em biodiversidade. Nós encontramos relações significativas entre a área do fragmento e espécies, interações e estrutura das redes, sendo que o último foi determinado pelo número de espécies remanescentes em cada comunidade. O número de espécies de aves frugívoras e plantas e as interações entre eles, bem como o número de links por espécie diminuíram significativamente conforme a área dos fragmentos é perdida. Por outro lado, o aninhamento da rede mostrou uma relação negativa com a área do fragmento, sugerindo um aumento da generalização da estrutura das redes com a fragmentação do habitat. No entanto, o grau de especialização das redes não foi afetado pela área, indicando que algumas propriedades de rede podem ser resistentes à perturbação. Sendo assim, a extinção local de espécies parceiras, conjuntamente com a perda das interações e associações planta-dispersor mais especializadas, sugere uma homogeneização do sistema conforme a área do fragmento é perdida. Nosso estudo fornece evidências empíricas para as relações rede-área, sendo estas direcionadas pela presença e/ou ausência das espécies remanescentes bem como das interações que estas realizam.


2018 ◽  
Vol 7 (2) ◽  
pp. 29-42
Author(s):  
S. karimi ◽  
M.R. Hemami ◽  
M. Tarkesh Esfahani ◽  
Ch. Baltzinger ◽  
◽  
...  

2013 ◽  
Author(s):  
Katharine L. Stuble ◽  
Courtney M. Patterson ◽  
Mariano A. Rodriguez-Cabal ◽  
Relena R. Ribbons ◽  
Robert R. Dunn ◽  
...  

Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of the eastern US. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed removal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed.


Author(s):  
Kliff Eldry G. Ibañez ◽  
Larry V. Padilla

Aims: Malayan box turtles’ (Cuoraamboinensis) ecological niche are essential in an ecosystem but are often overlooked. This study investigated the germination of selected seeds that passed through the gut of Malayan box turtles to determine its role in promoting seed dispersal and aiding seed germination. Study Design:Experimental approach. Place and Duration of Study:Pamantasan ng Lungsod ng Maynila (University of the City of Manila) and Dasmarinas, Cavite between June 2016 to March 2017. Methodology: The seeds that passed through the turtle’s gut (Gut Passed Seeds) and seeds that did not pass through its gut (Mechanically Extracted Seeds) underwent comparative germination test. The Germination Rate (GR) and Percent Germination (%GR) of each group were determined in the study.Seed shadowing was also conducted to evaluate the turtle’s seed dispersal capacity (endozoochory). Results: Results showed that after gut passage, seed GR and %GR were enhanced on Lycopersiconesculentum, Carica papaya, Psidiumguajava, and Muntingiacalabura. However, Germination Rate and Percent Germination of Passifloraquadrangularis decreased after gut passage. Statistical analyses revealed that there is a significant difference in the GR and %G of M. calabura and %G of L. esculentum, and P. quadrangularis. Thread trailing method showed that C. amboinensis can disperse seeds at a distance of 24.8 to 52.8 meters. Conclusion: This study demonstrates the important role of C. amboinensis in the ecosystem through its contribution to plant seed germination and dispersal.It showed that Malayan box turtles are not only seed dispersal agents but are also important in the germination of seeds that they have ingested and defecated.


Author(s):  
Fei Yu ◽  
Guangjie Li ◽  
Shanshan Wei ◽  
Xianfeng Yi ◽  
Jianmin Ma ◽  
...  

In general, it is accepted that gap formation significantly affects the placement of scatter-hoarded seeds by small rodents, but the effects of different forest gap sizes on the seed-eating and scatter-hoarding behaviors of small rodents remain unclear. Thus, we examined the effects of a closed canopy forest, forest edge, and gaps with different sizes on the spatial dispersal of Quercus variabilis acorns and cache placement by small rodents using coded plastic tags in the Taihang Mountains, China. The seeds were removed rapidly and there were significant differences in the seed-eating and caching strategies between the stand types. We found that Q. variabilis acorns were usually eaten after being removed from the closed canopy forest and forest edges. By contrast, the Q. variabilis acorns in the forest gap stands were more likely to be scatter hoarded. The dispersal distances of Q. variabilis acorns were significantly longer in the forest gap plots compared with the closed canopy and forest edge plots. However, the proportions of scatter-hoarded seeds did not increase significantly as the gap size increased. In small-scale oak reforestation projects or research, creating small gaps to promote rodent-mediated seed dispersal may effectively accelerate forest recovery and successional processes.


2018 ◽  
Vol 149 ◽  
pp. 40-45 ◽  
Author(s):  
Donald J. Padgett ◽  
Meghan Joyal ◽  
Sydney Quirk ◽  
Melissa Laubi ◽  
Thilina D. Surasinghe

Author(s):  
K. Greg Murray ◽  
Sharon Kinsman

The term “plant-animal interactions” includes a diverse array of biologically important relationships. Plant-herbivore relationships (in which an animal feeds on whole plants or parts of them) are examples of exploitation, because one species benefits from the interaction while the other suffers. Plant-pollinator and plant-seed disperser relationships (in which animals disperse pollen or seeds, usually in return for a food reward) are examples of mutualisms because they are beneficial to both parties. Another class of plant-animal mutualisms involves plants that provide nesting sites and/or food rewards to ants, which often protect the plant from herbivores or competing plants. Plantpollinator and plant-seed disperser mutualisms probably originated as cases of exploitation of plants by animals (Thompson 1982, Crepet 1983, Tiffney 1986). Many of the distinctive plant structures associated with animal-mediated pollen and seed dispersal (e.g., flowers, nectaries, attractive odors, fleshy fruit pulp, and thickened seed coats) presumably evolved to attract consumers of floral or seed resources while preventing them from digesting the pollen or seeds. mutualisms in structuring ecological communities. Competition and predator-prey interactions were more common subjects. Botanists had described the characteristics of the plant and animal players in pollination and seed dispersal mutualisms (Knuth 1906, 1908, 1909, Ridley 1930, van der Pijl 1969, Faegri and van der Pijl 1979), but these descriptive works did not fully examine plant-animal mutualisms in the context of communities. The opportunity to work in the neotropics, facilitated by the Organization for Tropical Studies (OTS), the Smithsonian Tropical Research Institute (STRI), and other institutions, attracted the attention of temperate-zone ecologists to the mutualisms that are much more conspicuous components of tropical systems than of temperate ones (Wheelwright 1988b). Plant-pollinator interactions have attracted more attention in Monteverde than plant-frugivore interactions, and plant-herbivore interactions remain conspicuously understudied. This imbalance probably reflects the interests of those who first worked at Monteverde and later returned with their own students, rather than differences in the significance of the interactions at Monteverde or elsewhere. Aside from a few studies of herbivory in particular species (e.g., Peck, “Agroecology of Prosapia,”), even basic surveys remain to be done.


Sign in / Sign up

Export Citation Format

Share Document