scholarly journals Temporal dynamics of plant-soil feedback and root-associated fungal communities over 100 years of invasion by a non-native plant

2015 ◽  
Vol 103 (6) ◽  
pp. 1557-1569 ◽  
Author(s):  
Nicola J. Day ◽  
Kari E. Dunfield ◽  
Pedro M. Antunes
2020 ◽  
Vol 6 (2) ◽  
pp. 104-111

Plant invasion is a key element defining the community structure and dynamics and has become a major concern for the invasive plants to control the restoration of ecosystem diversity. In the same line of thought, soil microorganisms are also considered as a significant parameter of evolution and invasive plants' success. The variations usually overserved in the composition and structure of the soil microorganisms and the consequences of plant invasion. Therefore, understanding the concept of plant invasion and soil microorganism impact plant competition and plant-soil feedback would be a very important step forward in invasive plant control and ecosystem restoration. This review aims to provide a conceptual explanation of plant invasion, the role of soil microorganisms on plant growth and its effects on the native plant-soil feedback and also to demonstrate the importance of understanding the integrative soil microorganism impact on the competition between native and invasive plants along with its effects on plant-soil feedback.


NeoBiota ◽  
2021 ◽  
Vol 64 ◽  
pp. 119-136
Author(s):  
Sherri L. Buerdsell ◽  
Brook G. Milligan ◽  
Erik A. Lehnhoff

Plant soil feedback (PSF) occurs when a plant modifies soil biotic properties and those changes in turn influence plant growth, survival or reproduction. These feedback effects are not well understood as mechanisms for invasive plant species. Eragrostis lehmanniana is an invasive species that has extensively colonized the southwest US. To address how PSFs may affect E. lehmanniana invasion and native Bouteloua gracilis growth, soil inoculant from four sites of known invasion age at the Appleton-Whittell Audubon Research Ranch in Sonoita, AZ were used in a PSF greenhouse study, incorporating a replacement series design. The purpose of this research was to evaluate PSF conspecific and heterospecific effects and competition outcomes between the invasive E. lehmanniana and a native forage grass, Bouteloua gracilis. Eragrostis lehmannianaPSFs were beneficial to B. gracilis if developed in previously invaded soil. Plant-soil feedback contributed to competitive suppression of B. gracilis only in the highest ratio of E. lehmanniana to B. gracilis. Plant-soil feedback did not provide an advantage to E. lehmanniana in competitive interactions with B. gracilis at low competition levels but were advantageous to E. lehmanniana at the highest competition ratio, indicating a possible density-dependent effect. Despite being beneficial to B. gracilis under many conditions, E. lehmanniana was the superior competitor.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
S. Emilia Hannula ◽  
Anna M. Kielak ◽  
Katja Steinauer ◽  
Martine Huberty ◽  
Renske Jongen ◽  
...  

ABSTRACT Microorganisms are found everywhere and have critical roles in most ecosystems, but compared to plants and animals, little is known about their temporal dynamics. Here, we investigated the temporal stability of bacterial and fungal communities in the soil and how their temporal variation varies between grasses and forb species. We established 30 outdoor mesocosms consisting of six plant monocultures and followed microbial communities for an entire year in these soils. We demonstrate that bacterial communities vary greatly over time and that turnover plays an important role in shaping microbial communities. We further show that bacterial communities rapidly shift from one state to another and that this is related to changes in the relative contribution of certain taxa rather than to extinction. Fungal soil communities are more stable over time, and a large part of the variation can be explained by plant species and by whether they are grasses or forbs. Our findings show that the soil bacterial community is shaped by time, while plant group and plant species-specific effects drive soil fungal communities. This has important implications for plant-soil research and highlights that temporal dynamics of soil communities cannot be ignored in studies on plant-soil feedback and microbial community composition and function. IMPORTANCE Our findings highlight how soil fungal and bacterial communities respond to time, season, and plant species identity. We found that succession shapes the soil bacterial community, while plant species and the type of plant species that grows in the soil drive the assembly of soil fungal communities. Future research on the effects of plants on soil microbes should take into consideration the relative roles of both time and plant growth on creating soil legacies that impact future plants growing in the soil. Understanding the temporal (in)stability of microbial communities in soils will be crucial for predicting soil microbial composition and functioning, especially as plant species compositions will shift with global climatic changes and land-use alterations. As fungal and bacterial communities respond to different environmental cues, our study also highlights that the selection of study organisms to answer specific ecological questions is not trivial and that the timing of sampling can greatly affect the conclusions made from these studies.


2018 ◽  
Vol 424 (1-2) ◽  
pp. 419-433 ◽  
Author(s):  
Eric Vukicevich ◽  
D. Thomas Lowery ◽  
José Ramón Úrbez-Torres ◽  
Pat Bowen ◽  
Miranda Hart

2020 ◽  
Author(s):  
Zhijie Zhang ◽  
Yanjie Liu ◽  
Caroline Brunel ◽  
Mark van Kleunen

AbstractSixty year ago, Elton proposed that diverse communities are more resistant to biological invasion. However, still little is known about which processes could drive this diversity-invasibility relationship. Here we examined whether plant-soil feedback on alien invaders is more negative when the soil originates from multiple native species. We trained soils with five individually grown native species, and used amplicon sequencing to analyze the resulting bacterial and fungal soil communities. We mixed the soils to create trained soils from one, two or four native species. We then grew four alien species separately on these differently trained soils. In the soil-conditioning phase, the five native species built species-specific bacterial and fungal communities in their rhizospheres. In the test phase, it did not matter whether the soil had been trained by one or two native species. However, the alien species achieved 11.7% less aboveground biomass when grown on soils trained by four native species than on soils trained by two native species. Our results showed for the first time, that plant-soil feedback could be a process that contributes to the negative relationship between diversity and invasibility.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


Sign in / Sign up

Export Citation Format

Share Document