scholarly journals Vibrio splendidus O‐antigen structure: a trade‐off between virulence to oysters and resistance to grazers

2020 ◽  
Vol 22 (10) ◽  
pp. 4264-4278 ◽  
Author(s):  
Daniel Oyanedel ◽  
Yannick Labreuche ◽  
Maxime Bruto ◽  
Hajar Amraoui ◽  
Etienne Robino ◽  
...  
2015 ◽  
Vol 407 ◽  
pp. 131-136 ◽  
Author(s):  
Małgorzata Siwińska ◽  
Evgeniya A. Levina ◽  
Olga G. Ovchinnikova ◽  
Dominika Drzewiecka ◽  
Alexander S. Shashkov ◽  
...  

2011 ◽  
Vol 346 (6) ◽  
pp. 828-832 ◽  
Author(s):  
Andrei V. Perepelov ◽  
Bin Liu ◽  
Sof’ya N. Senchenkova ◽  
Dan Guo ◽  
Sergei D. Shevelev ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Nathaniel D. Chu ◽  
Sean A. Clarke ◽  
Sonia Timberlake ◽  
Martin F. Polz ◽  
Alan D. Grossman ◽  
...  

ABSTRACT Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. IMPORTANCE DNA mutations are a double-edged sword. Most mutations are harmful; they can scramble precise genetic sequences honed over thousands of generations. However, in rare cases, mutations also produce beneficial new traits that allow populations to adapt to changing environments. Recent evidence suggests that some bacteria balance this trade-off by altering their mutation rates to suit their environment. To date, however, we know of few mechanisms that allow bacteria to change their mutation rates. We describe one such mechanism, driven by the action of a mobile element, in the marine bacterium Vibrio splendidus 12B01. We also found similar mobile genetic sequences in the mutS genes of many different bacteria, including clinical and agricultural pathogens. These mobile elements might play an as yet unknown role in the evolution of these important bacteria. IMPORTANCE DNA mutations are a double-edged sword. Most mutations are harmful; they can scramble precise genetic sequences honed over thousands of generations. But in rare cases, mutations also produce beneficial new traits that allow populations to adapt to changing environments. Recent evidence suggests that some bacteria balance this trade-off by altering their mutation rates to suit their environment. To date, however, we know of few mechanisms that allow bacteria to change their mutation rates. We describe one such mechanism, driven by the action of a mobile element, in the marine bacterium Vibrio splendidus 12B01. We also found similar mobile genetic sequences in the mutS genes of many different bacteria, including clinical and agricultural pathogens. These mobile elements might play an as yet unknown role in the evolution of these important bacteria.


Microbiology ◽  
2010 ◽  
Vol 156 (6) ◽  
pp. 1642-1649 ◽  
Author(s):  
Bin Liu ◽  
Andrei V. Perepelov ◽  
Dan Li ◽  
Sof'ya N. Senchenkova ◽  
Yanfang Han ◽  
...  

O-antigen is a component of the outer membrane of Gram-negative bacteria and is one of the most variable cell surface constituents, leading to major antigenic variability. The O-antigen forms the basis for bacterial serotyping. In this study, the O-antigen structure of Salmonella O66 was established, which differs from the known O-antigen structure of Escherichia coli O166 only in one linkage (most likely the linkage between the O-units) and O-acetylation. The O-antigen gene clusters of Salmonella O66 and E. coli O166 were found to have similar organizations, the only exception being that in Salmonella O66, the wzy gene is replaced by a non-coding region. The function of the wzy gene in E. coli O166 was confirmed by the construction and analysis of deletion and trans-complementation mutants. It is proposed that a functional wzy gene located outside the O-antigen gene cluster is involved in Salmonella O66 O-antigen biosynthesis, as has been reported previously in Salmonella serogroups A, B and D1. The sequence identity for the corresponding genes between the O-antigen gene clusters of Salmonella O66 and E. coli O166 ranges from 64 to 70 %, indicating that they may originate from a common ancestor. It is likely that after the species divergence, Salmonella O66 got its specific O-antigen form by inactivation of the wzy gene located in the O-antigen gene cluster and acquisition of two new genes (a wzy gene and a prophage gene for O-acetyl modification) both residing outside the O-antigen gene cluster.


1984 ◽  
Vol 24 (2-3) ◽  
pp. 277-280 ◽  
Author(s):  
Derek H. Shaw ◽  
M.Jeanne Squires

2021 ◽  
Vol 22 (23) ◽  
pp. 12746
Author(s):  
Jing Wang ◽  
Yujuan Xu ◽  
Chunjun Qin ◽  
Jing Hu ◽  
Jian Yin ◽  
...  

The O-antigen is the outermost component of the lipopolysaccharide layer in Gram-negative bacteria, and the variation of O-antigen structure provides the basis for bacterial serological diversity. Here, we determined the O-antigen structure of an Escherichia coli strain, LL004, which is totally different from all of the E. coli serogroups. The tetrasaccharide repeating unit was determined as →4)-β-d-Galp-(1→3)-β-d-GlcpNAc6OAc(~70%)-(1→3)-β-d-GalpA-(1→3)-β-d-GalpNAc-(1→ with monosaccharide analysis and NMR spectra. We also characterized the O-antigen gene cluster of LL004, and sequence analysis showed that it correlated well with the O-antigen structure. Deletion and complementation testing further confirmed its role in O-antigen biosynthesis, and indicated that the O-antigen of LL004 is assembled via the Wzx/Wzy dependent pathway. Our findings, in combination, suggest that LL004 should represent a novel serogroup of E. coli.


Glycobiology ◽  
2013 ◽  
Vol 23 (4) ◽  
pp. 475-485 ◽  
Author(s):  
Y. A. Knirel ◽  
R. Lan ◽  
S. N. Senchenkova ◽  
J. Wang ◽  
A. S. Shashkov ◽  
...  

2014 ◽  
Vol 211 (9) ◽  
pp. 1893-1904 ◽  
Author(s):  
Timothy J. Wells ◽  
Deborah Whitters ◽  
Yanina R. Sevastsyanovich ◽  
Jennifer N. Heath ◽  
John Pravin ◽  
...  

Although specific antibody induced by pathogens or vaccines is a key component of protection against infectious threats, some viruses, such as dengue, induce antibody that enhances the development of infection. In contrast, antibody-dependent enhancement of bacterial infection is largely unrecognized. Here, we demonstrate that in a significant portion of patients with bronchiectasis and Pseudomonas aeruginosa lung infection, antibody can protect the bacterium from complement-mediated killing. Strains that resist antibody-induced, complement-mediated killing produce lipopolysaccharide containing O-antigen. The inhibition of antibody-mediated killing is caused by excess production of O-antigen–specific IgG2 antibodies. Depletion of IgG2 to O-antigen restores the ability of sera to kill strains with long-chain O-antigen. Patients with impaired serum-mediated killing of P. aeruginosa by IgG2 have poorer respiratory function than infected patients who do not produce inhibitory antibody. We suggest that excessive binding of IgG2 to O-antigen shields the bacterium from other antibodies that can induce complement-mediated killing of bacteria. As there is significant sharing of O-antigen structure between different Gram-negative bacteria, this IgG2-mediated impairment of killing may operate in other Gram-negative infections. These findings have marked implications for our understanding of protection generated by natural infection and for the design of vaccines, which should avoid inducing such blocking antibodies.


Microbiology ◽  
2017 ◽  
Vol 163 (11) ◽  
pp. 1637-1640
Author(s):  
Xiqian Wang ◽  
Anna N. Kondakova ◽  
Yutong Zhu ◽  
Yuriy A. Knirel ◽  
Aidong Han
Keyword(s):  

2000 ◽  
Vol 182 (18) ◽  
pp. 5256-5261 ◽  
Author(s):  
Lei Wang ◽  
Peter R. Reeves

ABSTRACT O antigen is part of the lipopolysaccharide present in the outer membrane of gram-negative bacteria. Escherichia coli andSalmonella enterica each have many forms of O antigen, but only three are common to the two species. It has been found that, in general, O-antigen genes are of low GC content. This deviation in GC content from that of typical S. enterica or E. coli genes (51%) is thought to indicate that the O-antigen DNA originated in species other than S. enterica or E. coli and was captured by lateral transfer. The O-antigen structure of Salmonella enterica O35 is identical to that of E. coli O111, commonly found in enteropathogenicE. coli strains. This O antigen, which has been shown to be a virulence factor in E. coli, contains colitose, a 3,6-dideoxyhexose found only rarely in theEnterobacteriaceae. Sequencing of the O35-antigen gene cluster of S. enterica serovar Adelaide revealed the same gene order and flanking genes as in E. coli O111. The divergence between corresponding genes of these two gene clusters at the nucleotide level ranges from 21.8 to 11.7%, within the normal range of divergence between S. enterica and E. coli. We conclude that the ancestor of E. coli andS. enterica had an O antigen identical to the O111 and O35 antigens, respectively, of these species and that the gene cluster encoding it has survived in both species.


Sign in / Sign up

Export Citation Format

Share Document