Vacuolar H + ‐ ATPase is involved in preventing heavy metal‐induced oxidative stress in Saccharomyces cerevisiae

2020 ◽  
Vol 22 (6) ◽  
pp. 2403-2418
Author(s):  
Todsapol Techo ◽  
Supat Jindarungrueng ◽  
Supinda Tatip ◽  
Tossapol Limcharoensuk ◽  
Prayad Pokethitiyook ◽  
...  

2012 ◽  
Vol 6 (2) ◽  
pp. 120-123 ◽  
Author(s):  
Oliver Gamondi ◽  
Sebastian Chapela ◽  
Ines Nievas ◽  
Isabel Burgos ◽  
Manuel Alonso ◽  
...  


2018 ◽  
Vol 12 (2) ◽  
pp. 169-172 ◽  
Author(s):  
Mustafa Sevindik ◽  
Hasan Akgul ◽  
Celal Bal ◽  
Deniz Altuntas ◽  
Ali Imran Korkmaz ◽  
...  


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 155
Author(s):  
Anastasia Giannakoula ◽  
Ioannis Therios ◽  
Christos Chatzissavvidis

Photosynthetic changes and antioxidant activity to oxidative stress were evaluated in sour orange (Citrus aurantium L.) leaves subjected to lead (Pb), copper (Cu) and also Pb + Cu toxicity treatments, in order to elucidate the mechanisms involved in heavy metal tolerance. The simultaneous effect of Pb− and Cu on growth, concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), chlorophylls, flavonoids, carotenoids, phenolics, chlorophyll fluorescence and photosynthetic parameters were examined in leaves of Citrus aurantium L. plants. Exogenous application of Pb and Cu resulted in an increase in leaf H2O2 and lipid peroxidation (MDA). Toxicity symptoms of both Pb and Cu treated plants were stunted growth and decreased pigments concentration. Furthermore, photosynthetic activity of treated plants exhibited a significant decline. The inhibition of growth in Pb and Cu-treated plants was accompanied by oxidative stress, as indicated by the enhanced lipid peroxidation and the high H2O2 concentration. Furthermore, antioxidants in citrus plants after exposure to high Pb and Cu concentrations were significantly increased compared to control and low Pb and Cu treatments. In conclusion, this study indicates that Pb and Cu promote lipid peroxidation, disrupt membrane integrity, reduces growth and photosynthesis and inhibit mineral nutrition. Considering the potential for adverse human health effects associated with high concentrations of Pb and Cu contained in edible parts of citrus plants the study signals that it is important to conduct further research into the accessibility and uptake of the tested heavy metals in the soil and whether they pose risks to humans.



Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 487
Author(s):  
Alexander Tomashevsky ◽  
Ekaterina Kulakovskaya ◽  
Ludmila Trilisenko ◽  
Ivan V. Kulakovskiy ◽  
Tatiana Kulakovskaya ◽  
...  

Inorganic polyphosphate (polyP) is an important factor of alkaline, heavy metal, and oxidative stress resistance in microbial cells. In yeast, polyP is synthesized by Vtc4, a subunit of the vacuole transporter chaperone complex. Here, we report reduced but reliably detectable amounts of acid-soluble and acid-insoluble polyPs in the Δvtc4 strain of Saccharomyces cerevisiae, reaching 10% and 20% of the respective levels of the wild-type strain. The Δvtc4 strain has decreased resistance to alkaline stress but, unexpectedly, increased resistance to oxidation and heavy metal excess. We suggest that increased resistance is achieved through elevated expression of DDR2, which is implicated in stress response, and reduced expression of PHO84 encoding a phosphate and divalent metal transporter. The decreased Mg2+-dependent phosphate accumulation in Δvtc4 cells is consistent with reduced expression of PHO84. We discuss a possible role that polyP level plays in cellular signaling of stress response mobilization in yeast.



2010 ◽  
Vol 141 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Sara Landolfo ◽  
Giacomo Zara ◽  
Severino Zara ◽  
Marilena Budroni ◽  
Maurizio Ciani ◽  
...  


PLoS Genetics ◽  
2013 ◽  
Vol 9 (7) ◽  
pp. e1003640 ◽  
Author(s):  
Ireneusz Litwin ◽  
Tomasz Bocer ◽  
Dorota Dziadkowiec ◽  
Robert Wysocki


Author(s):  
Chisako Funada ◽  
Nanami Tanino ◽  
Miina Fukaya ◽  
Yu Mikajiri ◽  
Masayoshi Nishiguchi ◽  
...  


2014 ◽  
Vol 175 (3) ◽  
pp. 1281-1293 ◽  
Author(s):  
Qihua Zhang ◽  
Guangming Zeng ◽  
Guiqiu Chen ◽  
Min Yan ◽  
Anwei Chen ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document