scholarly journals Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought

Author(s):  
Claudia Breitkreuz ◽  
Laura Herzig ◽  
François Buscot ◽  
Thomas Reitz ◽  
Mika Tarkka
Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Rok Mihelič ◽  
Jure Pečnik ◽  
Matjaž Glavan ◽  
Marina Pintar

Maintaining good soil quality is crucial for the sustainability of agriculture. This study aimed to evaluate the effectiveness of the visual soil assessment (VSA) method by testing it on two soil types and two agricultural management practices (AMP) (organic and integrated) that are considered to protect soil quality. We selected two farms with plots on two river terraces with different soil properties. The test was based on the modified method Annual Crops Visual Quality Assessment developed by the Food and Agriculture Organization of the United Nations and supported by a standardized soil physical and chemical analysis. This study showed that the assessed score is highly dependent on the type of farming practice and how soils are managed. The soil type also plays an important role. The results for Calcaric Fluvisol showed that the effects of selected agricultural management practices on the visual assessment of soil quality could be almost undetectable. The time of assessment also plays a significant role in VSA scoring. Different crops and agricultural activities with significant impacts on the soil occur throughout the year (especially in vegetable production). It was observed that a higher score for the soil cover indicator had a beneficial effect on the total VSA rating.


2020 ◽  
Vol 96 (6) ◽  
Author(s):  
Marie Simonin ◽  
Cindy Dasilva ◽  
Valeria Terzi ◽  
Eddy L M Ngonkeu ◽  
Diégane Diouf ◽  
...  

ABSTRACT Here, we assessed the relative influence of wheat genotype, agricultural practices (conventional vs organic) and soil type on the rhizosphere microbiome. We characterized the prokaryotic (archaea and bacteria) and eukaryotic (fungi and protists) communities in soils from four different countries (Cameroon, France, Italy, Senegal) and determined if a rhizosphere core microbiome existed across these different countries. The wheat genotype had a limited effect on the rhizosphere microbiome (2% of variance) as the majority of the microbial taxa were consistently associated to multiple wheat genotypes grown in the same soil. Large differences in taxa richness and in community structure were observed between the eight soils studied (57% variance) and the two agricultural practices (10% variance). Despite these differences between soils, we observed that 177 taxa (2 archaea, 103 bacteria, 41 fungi and 31 protists) were consistently detected in the rhizosphere, constituting a core microbiome. In addition to being prevalent, these core taxa were highly abundant and collectively represented 50% of the reads in our data set. Based on these results, we identify a list of key taxa as future targets of culturomics, metagenomics and wheat synthetic microbiomes. Additionally, we show that protists are an integral part of the wheat holobiont that is currently overlooked.


2020 ◽  
Author(s):  
Ming-Yi Chou ◽  
Smita Shrestha ◽  
Renee Rioux ◽  
Paul Koch

ABSTRACTDollar spot, caused by the fungal pathogen Clarireedia spp., is an economically important disease of amenity turfgrass in temperate climates worldwide. This disease often occurs in a highly variable manner, even on a local scale with relatively uniform environmental conditions. The objective of this study was to investigate mechanisms behind this local variation, focusing on contributions of the soil and rhizosphere microbiome. Turfgrass, rhizosphere, and bulk soil samples were taken from within a 256 m2 area of healthy turfgrass, transported to a controlled environment chamber, and inoculated with C. jacksonii. Bacterial communities were profiled targeting the 16s rRNA gene, and 16 different soil chemical properties were assessed. Despite their initial uniform appearance, the samples differentiated into highly susceptible and moderately susceptible groups following inoculation in the controlled environment chamber. The highly susceptible samples harbored a unique rhizosphere microbiome with lower relative abundance of antibiotic-producing bacterial taxa and higher predicted abundance of genes associated with xenobiotic biodegradation pathways. In addition, stepwise regression revealed that bulk soil iron content was the only significant soil characteristic that positively regressed with decreased dollar spot susceptibility during the peak disease development stage. These findings suggest that localized variation in soil iron induces the plant to select for a particular rhizosphere microbiome that alters the disease outcome. More broadly, further research in this area may indicate how plot-scale variability in soil properties can drive variable plant disease development through alterations in the rhizosphere microbiome.IMPORTANCEDollar spot is the most economically important disease of amenity turfgrass, and more fungicides are applied targeting dollar spot than any other turfgrass disease. Dollar spot symptoms are small (3-5 cm), circular patches that develop in a highly variable manner within plot-scale even under seemingly uniform conditions. The mechanism behind this variable development is unknown. This study observed that differences in dollar spot development over a 256 m2 area were associated with differences in bulk soil iron concentration and correlated with a particular rhizosphere microbiome. These findings provide important clues for understanding the mechanisms behind the highly variable development of dollar spot, which may offer important clues for innovative control strategies. Additionally, these results also suggest that small changes in soil properties can alter plant activity and hence the plant-associated microbial community which has important implications for a broad array of important agricultural and horticultural plant pathosystems.


2019 ◽  
Author(s):  
Marie Simonin ◽  
Cindy Dasilva ◽  
Valeria Terzi ◽  
Eddy L. M. Ngonkeu ◽  
Diégane Diouf ◽  
...  

AbstractHere, we assessed the relative influence of wheat genotype, agricultural practices (conventional vs organic) and soil type on the rhizosphere microbiome. We characterized the prokaryotic (archaea, bacteria) and eukaryotic (fungi, protists) communities in soils from four different countries (Cameroon, France, Italy, Senegal) and determined if a rhizosphere core microbiome existed across these different countries. The wheat genotype had a limited effect on the rhizosphere microbiome (2% of variance) as the majority of the microbial taxa were consistently associated to multiple wheat genotypes grown in the same soil. Large differences in taxa richness and in community structure were observed between the eight soils studied (57% variance) and the two agricultural practices (10% variance). Despite these differences between soils, we observed that 179 taxa (2 archaea, 104 bacteria, 41 fungi, 32 protists) were consistently detected in the rhizosphere, constituting a core microbiome. In addition to being prevalent, these core taxa were highly abundant and collectively represented 50% of the reads in our dataset. Based on these results, we identify a list of key taxa as future targets of culturomics, metagenomics and wheat synthetic microbiomes. Additionally, we show that protists are an integral part of the wheat holobiont that is currently overlooked.Graphical Abstract


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 539 ◽  
Author(s):  
R. Michael Lehman ◽  
Shannon L. Osborne ◽  
Kimberly McGraw

Linking agricultural management tactics to quantifiable changes in soil health-related properties is a key objective for increasing adoption of the most favorable management practices. We used two long-term, no-till cropping studies to illustrate the variable patterns of response of soil structure indices and microbial activity to additional management tactics, including crop rotational diversity, residue management and cover cropping. We found that observable effects of management tactics on soil properties were often dependent on the current crop phase sampled, even though the treatments were well-established. In some cases, a single additional management tactic produced a response, two tactics each produced a response and sometimes there were interactions between tactics. However, importantly, we never observed a negative effect for any of the response variables when stacking soil health building practices in no-till cropping systems. The collective results from the two field studies illustrate that soil health improvements with stacking management tactics are not always simply additive and are affected by temporal relationships inherent to the treatments. We conclude that the implementation of multiple positive management tactics increases the likelihood that improvements in soil properties can be documented with one or more of the proxy measures for soil health.


2021 ◽  
Author(s):  
Yu-Pei Chen ◽  
Chai-Fang Tsai ◽  
PD Rekha ◽  
Sudeep Ghate ◽  
Hsi-Yuan Huang ◽  
...  

Abstract Background The soil quality and health of the tea plantations are dependent on the agriculture management practices, and long-term chemical fertilizer use is implicated in soil decline. Hence, several sustainable practices are used to improve and maintain the soil quality. Here, in this study, changes in soil properties, enzymatic activity, and dysbiosis in bacterial community composition were compared using three agricultural management practices, namely conventional (CA), sustainable (SA) and transformational agriculture (TA) in the tea plantation during 2016 and 2017 period. Soil samples at two-months intervals were collected and analyzed. Results The results of the enzyme activities revealed that acid phosphatase, arylsulfatase, β-glucosidase, and urease activities differed considerably among the soils representing the three management practices. Combining the redundancy and multiple regression analysis, the change in the arylsulfatase activity was explained by soil pH as a significant predictor in the SA soils. The soil bacterial community was predominated by the phyla Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Bacteroidetes in the soil throughout the sampling period. Higher Alpha diversity scores indicated increased bacterial abundance and diversity in the SA soils. A significant relationship between bacterial richness indices (SOBS, Chao and ACE) and soil pH, K and P was observed in the SA soils. The diversity indices namely Shannon and Simpson also showed variations, suggesting the shift in the diversity of less abundant and more common species. Furthermore, the agricultural management practices, soil pH fluctuation and the extractable elements had a greater influence on bacterial structure than that of temporal change. Conclusions Based on the cross-over analysis of bacterial composition, enzymatic activity and the soil properties, the relationship between bacterial composition and biologically-driven ecological processes can identified as indicators of sustainability for the tea plantation.


Author(s):  
A. Yu. Egovtseva ◽  
T. N. Melnichuk ◽  
S. F. Abdurashitov

The use of microbial preparations contributed to a change in the taxonomic structure of winter wheat rhizosphere microbiome was established. A more significant effect of microbial preparations was noted under no-till technology on the structure of the microbiome than with the traditional farming system.


2018 ◽  
Vol 9 ◽  
Author(s):  
Dmitri V. Mavrodi ◽  
Olga V. Mavrodi ◽  
Liam D. H. Elbourne ◽  
Sasha Tetu ◽  
Robert F. Bonsall ◽  
...  

2016 ◽  
Vol 42 (5) ◽  
pp. 321-327 ◽  
Author(s):  
Andréa Fernandes Rodrigues ◽  
Tancredo Augusto Feitosa de Souza ◽  
Luciano Façanha Marques ◽  
Jacob Silva Souto ◽  
Wilton Pereira da Silva

Sign in / Sign up

Export Citation Format

Share Document