The tetrameric assembly of 2‐aminomuconic 6‐semialdehyde dehydrogenase is a functional requirement of cofactor NAD + binding

Author(s):  
Qiuli Shi ◽  
Yanjuan Chen ◽  
Xinxin Li ◽  
Hui Dong ◽  
Cheng Chen ◽  
...  
2021 ◽  
Author(s):  
Qiuli Shi ◽  
Yanjuan Chen ◽  
Xinxin Li ◽  
Hui Dong ◽  
Cheng Chen ◽  
...  

The bacterium Pseudomonas sp. AP-3 is able to use the environmental pollutant 2-aminophenol as its sole source of carbon, nitrogen, and energy. Eight genes (amnA, B, C, D, E, F, G, and H) encoding 2-aminophenol metabolizing enzymes are clustered into a single operon. 2-aminomuconic 6-semialdehyde dehydrogenase (AmnC), a member of the aldehyde dehydrogenase (ALDH) superfamily, is responsible for oxidizing 2-aminomuconic 6-semialdehyde to 2-aminomuconate. In contrast to many other members of the ALDH superfamily, the structural basis of the catalytic activity of AmnC remains elusive. Here, we present the crystal structure of AmnC, which displays a homotetrameric quaternary assembly that is directly involved in its enzymatic activity. The tetrameric state of AmnC in solution was also presented using small-angle X-ray scattering. The tetramerization of AmnC is mediated by the assembly of a protruding hydrophobic beta-strand motif and residues V121 and S123 located in the NAD+-binding domain of each subunit. Dimeric mutants of AmnC dramatically lose NAD+ binding affinity and enzyme activity, indicating that tetrameric assembly of AmnC is required for oxidizing the unstable metabolic intermediate 2-aminomuconic 6-semialdehyde to 2-aminomuconic acid in the 2-aminophenol metabolism pathway.


Author(s):  
Muralitharan Shanmugakonar ◽  
Vijay Kanth Govindharajan ◽  
Kavitha Varadharajan ◽  
Hamda Al-Naemi

Laboratory Animal Research Centre (LARC) has developed an early emergency operational plan for COVID-19 pandemic situation. Biosafety and biosecurity measures were planned and implemented ahead of time to check the functional requirement to prevent the infection. Identified necessary support for IT, transport, procurement, finance, admin and research to make the operations remotely and successfully.


2021 ◽  
pp. 088307382098126
Author(s):  
Phillip L. Pearl ◽  
Melissa L. DiBacco ◽  
Christos Papadelis ◽  
Thomas Opladen ◽  
Ellen Hanson ◽  
...  

Objective: The SSADHD Natural History Study was initiated in 2019 to define the natural course and identify biomarkers correlating with severity. Methods: The study is conducted by 4 institutions: BCH (US clinical), WSU (bioanalytical core), USF (biostatistical core), and Heidelberg (iNTD), with support from the family advocacy group (SSADH Association). Recruitment goals were to study 20 patients on-site at BCH, 10 with iNTD, and 25 as a standard-of care cohort. Results: At this half-way point of this longitudinal study, 28 subjects have been recruited (57% female, mean 9 years, range 18 months–40 years). Epilepsy is present in half and increases in incidence and severity, as do psychiatric symptoms, in adolescence and adulthood. The average Full Scale IQ (FSIQ) was 53 (Verbal score of 56, Non Verbal score of 49), and half scored as having ASD. Although there was no correlation between gene variant and phenotypic severity, there were extreme cases of lowest functioning in one individual and highest in another that may have genotype-phenotype correlation. The most common EEG finding was mild background slowing with rare epileptiform activity, whereas high-density EEG and magnetoencephalography showed reduction in the gamma frequency band consistent with GABAergic dysfunction. MR spectroscopy showed elevations in the GABA/NAA ratio in all regions studied with no crossover between subjects and controls. Conclusions: The SSADH Natural History Study is providing a unique opportunity to study the complex pathophysiology longitudinally and derive electrophysiologic, neuroimaging, and laboratory data for correlation and to serve as biomarkers for clinical trials and prognostic assessments in this ultra-rare inherited disorder of GABA metabolism.


1974 ◽  
Vol 249 (6) ◽  
pp. 1704-1716
Author(s):  
Peter H. Koo ◽  
Elijah Adams

2021 ◽  
pp. 088307382098774
Author(s):  
Dana C. Walters ◽  
Regan Lawrence ◽  
Trevor Kirby ◽  
Jared T. Ahrendsen ◽  
Matthew P. Anderson ◽  
...  

This study has extended previous metabolic measures in postmortem tissues (frontal and parietal lobes, pons, cerebellum, hippocampus, and cerebral cortex) obtained from a 37-year-old male patient with succinic semialdehyde dehydrogenase deficiency (SSADHD) who expired from SUDEP (sudden unexplained death in epilepsy). Histopathologic characterization of fixed cortex and hippocampus revealed mild to moderate astrogliosis, especially in white matter. Analysis of total phospholipid mass in all sections of the patient revealed a 61% increase in cortex and 51% decrease in hippocampus as compared to (n = 2-4) approximately age-matched controls. Examination of mass and molar composition of major phospholipid classes showed decreases in phospholipids enriched in myelin, such as phosphatidylserine, sphingomyelin, and ethanolamine plasmalogen. Evaluation of gene expression (RT2 Profiler PCR Arrays, GABA, glutamate; Qiagen) revealed dysregulation in 14/15 GABAA receptor subunits in cerebellum, parietal, and frontal lobes with the most significant downregulation in ∊, θ, ρ1, and ρ2 subunits (7.7-9.9-fold). GABAB receptor subunits were largely unaffected, as were ionotropic glutamate receptors. The metabotropic glutamate receptor 6 was consistently downregulated (maximum 5.9-fold) as was the neurotransmitter transporter (GABA), member 13 (maximum 7.3-fold). For other genes, consistent dysregulation was seen for interleukin 1β (maximum downregulation 9.9-fold) and synuclein α (maximal upregulation 6.5-fold). Our data provide unique insight into SSADHD brain function, confirming astrogliosis and lipid abnormalities previously observed in the null mouse model while highlighting long-term effects on GABAergic/glutamatergic gene expression in this disorder.


2021 ◽  
pp. 088307382199129
Author(s):  
Onur Afacan ◽  
Edward Yang ◽  
Alexander P. Lin ◽  
Eduardo Coello ◽  
Melissa L. DiBacco ◽  
...  

Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal recessive disorder of γ-aminobutyric acid (GABA) degradation, resulting in elevations of brain GABA and γ-hydroxybutyric acid (GHB). Previous magnetic resonance (MR) spectroscopy studies have shown increased levels of Glx in SSADH deficiency patients. Here in this work, we measure brain GABA in a large cohort of SSADH deficiency patients using advanced MR spectroscopy techniques that allow separation of GABA from overlapping metabolite peaks. We observed significant increases in GABA concentrations in SSADH deficiency patients for all 3 brain regions that were evaluated. Although GABA levels were higher in all 3 regions, each region had different patterns in terms of GABA changes with respect to age. We also report results from structural magnetic resonance imaging (MRI) of the same cohort compared with age-matched controls. We consistently observed signal hyperintensities in globus pallidus and cerebellar dentate nucleus.


2021 ◽  
Vol 11 (8) ◽  
pp. 3368
Author(s):  
Liping Wang ◽  
Jianshe Ma ◽  
Ping Su ◽  
Jianwei Huang

High-resolution pixel LED headlamps are lighting devices that can produce high-resolution light distribution to adapt to road and traffic conditions, intelligently illuminate traffic areas, and assist drivers. Due to the complexity of roads and traffic conditions, the functional diversity of high-resolution pixel LEDs headlamps and traffic safety has come into question and is the subject of in-depth research conducted by car manufacturers and regulators. We summarize the current possible functions of high-resolution pixel LED headlamps and analyze ways in which they could be improved. This paper also discusses the prospect of new technologies in the future.


Sign in / Sign up

Export Citation Format

Share Document