scholarly journals Visual Motion Influences the Contingent Auditory Motion Aftereffect

2003 ◽  
Vol 14 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Jean Vroomen ◽  
Beatrice de Gelder

In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa). Auditory aftereffects (i.e., a shift in the psychometric function for unimodal auditory motion perception) were bigger when a visual stimulus moved in the same direction as the sound than when no visual stimulus was presented. When the visual stimulus moved in the opposite direction, aftereffects were reversed and thus became contingent upon visual motion. When visual motion was combined with a stationary sound, no aftereffect was observed. These findings indicate that there are strong perceptual links between the visual and auditory motion-processing systems.

PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17499 ◽  
Author(s):  
Souta Hidaka ◽  
Wataru Teramoto ◽  
Yoichi Sugita ◽  
Yuko Manaka ◽  
Shuichi Sakamoto ◽  
...  

i-Perception ◽  
10.1068/ic890 ◽  
2011 ◽  
Vol 2 (8) ◽  
pp. 890-890
Author(s):  
Souta Hidaka ◽  
Wataru Teramoto ◽  
Yoichi Sugita ◽  
Yuko Manaka ◽  
Shuichi Sakamoto ◽  
...  

2020 ◽  
Author(s):  
A. Gurtubay-Antolin ◽  
C. Battal ◽  
C. Maffei ◽  
M. Rezk ◽  
S Mattioni ◽  
...  

ABSTRACTIn humans, the occipital middle-temporal region (hMT+/V5) specializes in the processing of visual motion, while the Planum Temporale (hPT) specializes in auditory motion processing. It has been hypothesized that these regions might communicate directly to achieve fast and optimal exchange of multisensory motion information. In this study, we investigated for the first time in humans the existence of direct white matter connections between visual and auditory motion-selective regions using a combined functional- and diffusion-MRI approach. We found reliable evidence supporting the existence of direct white matter connections between individually and functionally defined hMT+/V5 and hPT. We show that projections between hMT+/V5 and hPT do not overlap with large white matter bundles such as the Inferior Longitudinal Fasciculus (ILF) nor the Inferior Frontal Occipital Fasciculus (IFOF). Moreover, we did not find evidence for the existence of reciprocal projections between the face fusiform area and hPT, supporting the functional specificity of hMT+/V5 – hPT connections. Finally, evidence supporting the existence of hMT+/V5 – hPT connections was corroborated in a large sample of participants (n=114) from the human connectome project. Altogether, this study provides first evidence supporting the existence of direct occipito-temporal projections between hMT+/V5 and hPT which may support the exchange of motion information between functionally specialized auditory and visual regions and that we propose to name the middle (or motion) occipito-temporal track (MOTT).


2014 ◽  
Vol 28 (2) ◽  
pp. 82-100 ◽  
Author(s):  
Stephan Getzmann ◽  
Jörg Lewald

Neurophysiological findings suggested that auditory and visual motion information is integrated at an early stage of auditory cortical processing, already starting in primary auditory cortex. Here, the effect of visual motion on processing of auditory motion was investigated by employing electrotomography in combination with free-field sound motion. A delayed-motion paradigm was used in which the onset of motion was delayed relative to the onset of an initially stationary stimulus. The results indicated that activity related to the motion-onset response, a neurophysiological correlate of auditory motion processing, interacts with the processing of visual motion at quite early stages of auditory analysis in the dimensions of both the time and the location of cortical processing. A modulation of auditory motion processing by concurrent visual motion was found already around 170 ms after motion onset (cN1 component) in the regions of primary auditory cortex and posterior superior temporal gyrus: Incongruent visual motion enhanced the auditory motion onset response in auditory regions ipsilateral to the sound motion stimulus, thus reducing the pattern of contralaterality observed with unimodal auditory stimuli. No modulation was found in parietal cortex nor around 250 ms after motion onset (cP2 component) in any auditory region of interest. These findings may reflect the integration of auditory and visual motion information in low-level areas of the auditory cortical system at relatively early points in time.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Minsun Park ◽  
Randolph Blake ◽  
Yeseul Kim ◽  
Chai-Youn Kim

AbstractSensory information registered in one modality can influence perception associated with sensory information registered in another modality. The current work focuses on one particularly salient form of such multisensory interaction: audio-visual motion perception. Previous studies have shown that watching visual motion and listening to auditory motion influence each other, but results from those studies are mixed with regard to the nature of the interactions promoting that influence and where within the sequence of information processing those interactions transpire. To address these issues, we investigated whether (i) concurrent audio-visual motion stimulation during an adaptation phase impacts the strength of the visual motion aftereffect (MAE) during a subsequent test phase, and (ii) whether the magnitude of that impact was dependent on the congruence between auditory and visual motion experienced during adaptation. Results show that congruent direction of audio-visual motion during adaptation induced a stronger initial impression and a slower decay of the MAE than did the incongruent direction, which is not attributable to differential patterns of eye movements during adaptation. The audio-visual congruency effects measured here imply that visual motion perception emerges from integration of audio-visual motion information at a sensory neural stage of processing.


2003 ◽  
Vol 180 (1-2) ◽  
pp. 57-66 ◽  
Author(s):  
Michael F. Neelon ◽  
Rick L. Jenison

2020 ◽  
Vol 30 (13) ◽  
pp. R775-R778
Author(s):  
Nathan Van der Stoep ◽  
David Alais

2016 ◽  
Vol 10 ◽  
Author(s):  
Christopher C. Berger ◽  
H. Henrik Ehrsson

Perception ◽  
1994 ◽  
Vol 23 (10) ◽  
pp. 1111-1134 ◽  
Author(s):  
Nicholas J Wade

The visual motion aftereffect (MAE) was initially described after observation of movements in the natural environment, like those seen in rivers and waterfalls: stationary objects appeared to move briefly in the opposite direction. In the second half of the nineteenth century the MAE was displaced into the laboratory for experimental enquiry with the aid of Plateau's spiral. Such was the interest in the phenomenon that a major review of empirical and theoretical research was written in 1911. In the latter half of the present century novel stimuli (like drifting gratings, isoluminance patterns, spatial and luminance ramps, random-dot kinematograms, and first-order and second-order motions), introduced to study space and motion perception generally, have been applied to examine MAEs. Developing theories of cortical visual processing have drawn upon MAEs to provide a link between psychophysics and physiology; this has been most pronounced in the context of monocular and binocular channels in the visual system, the combination of colour and contour information, and in the cortical sites most associated with motion processing. The relatively unchanging characteristic of the study of MAEs has been the mode of measurement: duration continues to be used as an index of its strength, although measures of threshold elevation and nulling with computer-generated motions are becoming more prevalent. The MAE is a part of the armoury of motion phenomena employed to uncover the mysteries of vision. Over the last 150 years it has proved itself immensely adaptable to the shifts of fashion in visual science, and it is likely to continue in this vein.


Sign in / Sign up

Export Citation Format

Share Document