Growth of the yellow river delta over the past 800 years, as influenced by human activities

2003 ◽  
Vol 85 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Xu Jiongxin
2018 ◽  
Vol 38 ◽  
pp. 01008 ◽  
Author(s):  
GuoQiang An

The temporal and spatial variation of ecological land use and its current distribution were studied to provide reference for the protection of original ecological land and ecological environment in the Yellow River Delta. Using RS colour synthesis, supervised classification, unsupervised classification, vegetation index and other methods to monitor the impact of human activities on the original ecological land in the past 30 years; using GIS technology to analyse the statistical data and construct the model of original ecological land area index to study the ecological land distribution status. The results show that the boundary of original ecological land in the Yellow River Delta had been pushed toward the coastline at an average speed of 0.8km per year due to human activities. In the past 20 years, a large amount of original ecological land gradually transformed into artificial ecological land. In view of the evolution and status of ecological land in the Yellow River Delta, related local departments should adopt differentiated and focused protection measures to protect the ecological land of the Yellow River Delta.


Author(s):  
Hanyou Xie ◽  
Chong Huang ◽  
Jing Li ◽  
Yitao Zhang ◽  
Xiangbo Xu ◽  
...  

The intensive development of the Yellow River Delta has caused huge transportation of non-point pollutants into the Bohai Sea through source river estuaries and thus poses a considerable threat to eco-environmental security in the region. Long-term irrigation in the Yellow River basin, with occasional heavy rainfall and the related effects of ensuring hydrological processes and human activities in terms of nitrate N transport via surface water systems, is unclear. Using stable isotope (δ2H-H2O and δ18O-H2O, δ15N-NO3− and δ18O- NO3−) and auxiliary geographic data, the ISO source model was run to quantitatively analyze the supply relationship of river systems and the rapid change in the spatial pattern of nitrate N due to heavy rainfall in the estuarine delta. This analysis made clear the dominant contribution of agricultural activities and urbanization to NO3−-N emission, on which basis refined management measures were proposed to deal with NO3− in surface water from the “source-process”. The results of the study show that: (1) The relationship of surface water replenishment in the Yellow River Delta was affected not only by rainfall, irrigation, and other water conservancy measures but also the proportion of water from Yellow River flow declined from the source to estuary; (2) To a certain extent, rainfall diluted the concentration of nitrate N in the river and increased instantaneous flux of nitrate N into the sea, where nitrate N flux continuously increased from upstream to downstream; (3) The rapid deposition of nitrate in the estuary delta was driven by heavy rainfall and human activities such as excessive use of nitrogen fertilizers, rapid urbanization, and livestock waste discharge, and; (4) Scientific measures were needed to realize the interactive effect of the output of non-point source pollutants and the carrying and absorption capacity of coastal fragile ecosystems of the exogenous inputs.


2021 ◽  
Vol 13 (10) ◽  
pp. 1940
Author(s):  
Quantao Zhu ◽  
Peng Li ◽  
Zhenhong Li ◽  
Sixun Pu ◽  
Xiao Wu ◽  
...  

The integration of multi-source, multi-temporal, multi-band optical, and radar remote sensing images to accurately detect, extract, and monitor the long-term dynamic change of coastline is critical for a better understanding of how the coastal environment responds to climate change and human activities. In this study, we present a combination method to produce the spatiotemporal changes of the coastline in the Yellow River Delta (YRD) in 1980–2020 with both optical and Synthetic Aperture Radar (SAR) satellite remote sensing images. According to the measurement results of GPS RTK, this method can obtain a high accuracy of shoreline extraction, with an observation error of 71.4% within one pixel of the image. Then, the influence of annual water discharge and sediment load on the changes of the coastline is investigated. The results show that there are two significant accretion areas in the Qing 8 and Qingshuigou course. The relative high correlation illustrates that the sediment discharge has a great contribution to the change of estuary area. Human activities, climate change, and sea level rise that affect waves and storm surges are also important drivers of coastal morphology to be investigated in the future, in addition to the sediment transport.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 933 ◽  
Author(s):  
Changming Zhu ◽  
Xin Zhang ◽  
Qiaohua Huang

Yellow River Delta wetlands are essential for the migration of endangered birds and breeding. The wetlands, however, have been severely damaged during recent decades, partly due to the lack of wetland ecosystem protection by authorities. To have a better historical understanding of the spatio-temporal dynamics of the wetlands, this study aims to map and characterize patterns of the loss and degradation of wetlands in the Yellow River Delta using a time series of remotely sensed images (at nine points in time) based on object-based image analysis and knowledge transfer learning technology. Spatio-temporal analysis was conducted to document the long-term changes taking place in different wetlands over the four decades. The results showed that the Yellow River Delta wetlands have experienced significant changes between 1973 and 2013. The total area of wetlands has been reduced by 683.12 km2 during the overall period and the trend of loss continues. However, the rates and trends of change for the different types of wetlands were not the same. The natural wetlands showed a statistically significant decrease in area during the overall period (36.04 km2·year−1). Meanwhile, the artificial wetlands had the opposite trend and showed a statistically significant increase in area during the past four decades (18.96 km2·year−1). According to the change characteristics revealed by the time series wetland classification maps, the evolution process of the Yellow River Delta wetlands could be divided into three stages: (1) From 1973–1984, basically stable, but with little increase; (2) from 1984–1995, rapid loss; and (3) from 1995–2013, slow loss. The area of the wetlands reached a low point around 1995, and then with a little improvement, the regional wetlands entered a slow loss stage. It is believed that interference by human activities (e.g., urban construction, cropland creation, and oil exploitation) was the main reason for wetland degradation in the Yellow River Delta over the past four decades. Climate change also has long-term impacts on regional wetlands. In addition, due to the special geographical environment, the hydrological and sediment conditions and the location of the Yellow River mouth also have a significant influence on the evolution process of the wetlands.


2021 ◽  
Vol 13 (22) ◽  
pp. 4563
Author(s):  
Yi Zhang ◽  
Yilin Liu ◽  
Xinyuan Zhang ◽  
Haijun Huang ◽  
Keyu Qin ◽  
...  

In recent years, noticeable subsidence depressions have occurred along the coastal zone of the Yellow River Delta. Consistent with these changes, dramatic human modifications within the coastal zone stand out, and the coastline is altered from an undisturbed natural area to an artificial coastline. However, very few studies have attempted to quantitatively analyze the relationship between subsidence depression and human activities. Here, the subsidence characteristics of the different land-use types in the Yellow River Delta are examined, and their spatiotemporal trends are quantified using a long-term satellite-observed time series of 30 years (1984–2017) regarding the land use map in combination with the InSAR-derived vertical ground deformations during three typical periods (P1: 1992–2000, P2: 2007–2010, and P3: 2016–2017). Noticeably, the highest subsidence rates were observed in areas where substantial human activities were observed, such as the subsidence in the salt fields ranging from 13 mm/year to 32 mm/year to 453 mm/year, respectively. Moreover, through the land-use prediction of Land Change Modeler (LCM), it is found that the salt field area will be further expanded in the future. The ecological vulnerability of the Yellow River Delta coastal zone should receive more attention in the future in terms of planning environmental protection strategies.


Sign in / Sign up

Export Citation Format

Share Document