scholarly journals The end of hunger: fertilizers, microbes and plant productivity

Author(s):  
Hang‐Wei Hu ◽  
Qing‐Lin Chen ◽  
Ji‐Zheng He
Keyword(s):  
2016 ◽  
Vol 48 (2) ◽  
pp. 112-119 ◽  
Author(s):  
V.V. Morgun ◽  
◽  
S.M. Sichkar ◽  
V.M. Pochinok ◽  
A.K. Ninieva ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
pp. 37-42
Author(s):  
Inobat Ruzieva ◽  
◽  
Inobat Ruzieva ◽  
Islom Xaitov ◽  
Ulug`berdi Xursanov

2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Daru Mulyono

The objectives of the research were to make land suitability map for sugarcane plant (Saccharum officinarum), to give recommendation of location including area for sugarcane plant cultivation and to increase sugarcane plant productivity. The research used maps overlay and Geographical Information System (GIS) which used Arch-View Spatial Analysis version 2,0 A in Remote Sensing Laboratory, Agency for the Assessment and Application of Technology (BPPT), Jakarta. The research was carried out in Tegal Regency starting from June to October 2004.The results of the research showed that the suitable, conditionally suitable, and not suitable land for sugarcane cultivation in Tegal Regency reached to a high of 20,227 ha, 144 ha, and 81,599 ha respectively. There were six most dominant kind of soil: alluvial (32,735 ha), grumosol 5,760 ha), mediteran (17,067 ha), latosol   (18,595 ha), glei humus (596 ha), and regosol (22,721 ha).


Author(s):  
Francisco Arenas ◽  
Alfonso Navarro‐Ródenas ◽  
José Eduardo Marqués‐Gálvez ◽  
Stefano Ghignone ◽  
Antonietta Mello ◽  
...  

2019 ◽  
Vol 70 (3) ◽  
pp. 234
Author(s):  
Xiaojin Zou ◽  
Zhanxiang Sun ◽  
Ning Yang ◽  
Lizhen Zhang ◽  
Wentao Sun ◽  
...  

Intercropping is commonly practiced worldwide because of its benefits to plant productivity and resource-use efficiency. Belowground interactions in these species-diverse agro-ecosystems can greatly contribute to enhancing crop yields; however, our understanding remains quite limited of how plant roots might interact to influence crop biomass, photosynthetic rates, and the regulation of different proteins involved in CO2 fixation and photosynthesis. We address this research gap by using a pot experiment that included three root-barrier treatments with full, partial and no root interactions between foxtail millet (Setaria italica (L.) P.Beauv.) and peanut (Arachis hypogaea L.) across two growing seasons. Biomass of millet and peanut plants in the treatment with full root interaction was 3.4 and 3.0 times higher, respectively, than in the treatment with no root interaction. Net photosynthetic rates also significantly increased by 112–127% and 275–306% in millet and peanut, respectively, with full root interaction compared with no root interaction. Root interactions (without barriers) contributed to the upregulation of key proteins in millet plants (i.e. ribulose 1,5-biphosphate carboxylase; chloroplast β-carbonic anhydrase; phosphoglucomutase, cytoplasmic 2; and phosphoenolpyruvate carboxylase) and in peanut plants (i.e. ribulose 1,5-biphosphate carboxylase; glyceraldehyde-3-phosphate dehydrogenase; and phosphoglycerate kinase). Our results provide experimental evidence of a molecular basis that interspecific facilitation driven by positive root interactions can contribute to enhancing plant productivity and photosynthesis.


2016 ◽  
Vol 69 (3) ◽  
pp. 161-168 ◽  
Author(s):  
Rebecca E. Drenovsky ◽  
Megan L. Thornhill ◽  
Matthew A. Knestrick ◽  
Daniel M. Dlugos ◽  
Tony J. Svejcar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document