maternal plant
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 25 (5) ◽  
pp. 534-542
Author(s):  
L. M. Pshennikova

The cultivars of the common lilac (Syringa vulgaris) grown in the south of the Russian Far East are not always winter-hardy and are often damaged by fungal diseases due to a very humid climate. A promising trend in the selective breeding of lilacs in Russia is the creation of new breeding material based on the gene pool of the broadleaf lilac (S. oblata) and its hybrids in order to introduce valuable adaptive traits into cultivars. The present work aimed to identify the traits of leaf anatomy in species and cultivars of Syringa resistant and susceptible to Pseudocercospora lilacis, the causative agent of brown leaf spot disease. The study was carried out on the living collection of the Botanical Garden-Institute, Far Eastern Branch, Russian Academy of Sciences (Vladivostok). The leaf anatomical structure of two Syringa species showing different degrees of resistance to P. lilacis in the monsoon climate of the Far East (resistant S. oblata and weakly resistant S. vulgaris, and also their hybrid cultivars) has been analyzed. The differences between species, subspecies, and cultivars are quantitative: they differ in the number of spongy mesophyll layers, the cell height in the first layer of palisade mesophyll, the cell height in the upper and lower epidermises, and the thickness of both mesophylls. The interspecific hybrids resistant or weakly resistant to P. lilacis (brown leaf spot disease) mainly retain the leaf anatomy structure of the maternal plant. One of the traits determining the resistance of hybrid lilac cultivars is an increased number of spongy mesophyll layers in the leaf blade. The study of leaf anatomy has shown that the four-layered spongy mesophyll leaf parenchyma correlates with the resistance of lilacs from the subsection Euvulgaris to P. lilacis. In S. oblata, this trait is inherited down the maternal line. To establish lilac cultivars resistant to fungal diseases, it is advisable to cross the two species (S. oblata and S. vulgaris) or their cultivars using one of S. oblata subspecies as a maternal plant.


2021 ◽  
Vol 22 (9) ◽  
pp. 4602
Author(s):  
Lenka Zablatzká ◽  
Jana Balarynová ◽  
Barbora Klčová ◽  
Pavel Kopecký ◽  
Petr Smýkal

In angiosperms, the mature seed consists of embryo, endosperm, and a maternal plant-derived seed coat (SC). The SC plays a role in seed filling, protects the embryo, mediates dormancy and germination, and facilitates the dispersal of seeds. SC properties have been modified during the domestication process, resulting in the removal of dormancy, mediated by SC impermeability. This study compares the SC anatomy and histochemistry of two wild (JI64 and JI1794) and two domesticated (cv. Cameor and JI92) pea genotypes. Histochemical staining of five developmental stages: 13, 21, 27, 30 days after anthesis (DAA), and mature dry seeds revealed clear differences between both pea types. SC thickness is established early in the development (13 DAA) and is primarily governed by macrosclereid cells. Polyanionic staining by Ruthenium Red indicated non homogeneity of the SC, with a strong signal in the hilum, the micropyle, and the upper parts of the macrosclereids. High peroxidase activity was detected in both wild and cultivated genotypes and increased over the development peaking prior to desiccation. The detailed knowledge of SC anatomy is important for any molecular or biochemical studies, including gene expression and proteomic analysis, especially when comparing different genotypes and treatments. Analysis is useful for other crop-to-wild-progenitor comparisons of economically important legume crops.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Volodymyr Radchuk ◽  
Van Tran ◽  
Alexander Hilo ◽  
Aleksandra Muszynska ◽  
Andre Gündel ◽  
...  

AbstractCereal grains contribute substantially to the human diet. The maternal plant provides the carbohydrate and nitrogen sources deposited in the endosperm, but the basis for their spatial allocation during the grain filling process is obscure. Here, vacuolar processing enzymes have been shown to both mediate programmed cell death (PCD) in the maternal tissues of a barley grain and influence the delivery of assimilate to the endosperm. The proposed centrality of PCD has implications for cereal crop improvement.


2020 ◽  
Vol 302 (4) ◽  
pp. 887-898 ◽  
Author(s):  
Yuval Kesary ◽  
Kerem Avital ◽  
Liran Hiersch

2020 ◽  
Vol 85-86 ◽  
pp. 25-40
Author(s):  
S.V. Klymenko ◽  
A.P. Ilyinska

In the context of global climate change, the current strategy of agroeconomics focuses on the introduction of unique plant species and the selection of new commercially important cultivars adapted to the dramatic weather changes. Cornus officinalis (Cornaceae) has Chinese origin, its reintroduction at the M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine started in 1993. The objectives of this research were: to investigate the biometric parameters of fruits and leaves of C. officinalis genotypes, C. officinalis × C. mas hybrid ‘Etude’ and genotype from the grafting C. officinalis on C. mas under cultivation in the M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine, and to determine the degree of adaptation of C. officinalis to the climatic conditions of Ukraine (in particular, Right-Bank Forest Steppe) for selection of promising genotypes for further breeding work. Material and methods. We used: a) 26-year-old maternal plant obtained from a two-year-old seedling in 1993 received from the nursery “Northwoods Wholesale Nursery” Mollala (Oregon, USA), where it was grown as an ornamental plant; b) seedlings of the maternal plant; c) cultivar Etude, which is an artificial hybrid from crossing C. officinalis × C. mas; and d) genotype obtained from grafting C. officinalis on C. mas. In our experiment, the maternal plant is indicated as G-01, while other plants – as G-02–G-08 genotypes. We determined the biometric parameters of the fruit (length, diameter, and weight), endocarp (length, diameter, and weight), pedicel (length and thickness), leaf blade (length, width, and the number of lateral veins) and petiole (length, width, and thickness). We examined the dynamics of fruit and endocarp formation during the season (genotypes G-01–G-03 and G-05) and compared the biometric characteristics of the fruit of genotypes G-01–G-05 from crops of two years, 2010 and 2018, which were most favorable in weather conditions. We have processed quantitative data in the PAST 2.10 software. The differences between the samples were estimated using the Tukey-Kramer test. The degree of variability was determined by the coefficient of variation. To assess the level of variability, we used the classification of Mamaev (1975). Results. We have found that the largest fruits in 2010 were observed in the genotype G-01 and the smallest – in the genotype G-03. The coefficient of variation of the linear parameters of the fruit and endocarp was in the range 5.7–10.1 %; the level of variability was very low or low. The variability of fruit weight and endocarp was high; the coefficient of variation was from 7.0 up to 28.3 %. The amplitude of the linear parameters of the leaf was wide (coefficient of variation was from 9.8 to 31.0 %). The cultivar Etude differed from other C. officinalis genotypes in size and weight of (M = 1800 mg, max = 2400 mg) and a much wider amplitude of variation in the length (17.9–22.6 vs. 14.3–18.2 mm) of the fruit. The largest leaves were in the genotypes G-08 and G-01, and the smallest – in the genotype G-02. The cultivar Etude did not differ so much by the mean leaf morphometric indices and number of veins, but it demonstrated one of the broadest leaf blades (51.5 mm). Conclusions. The data obtained in this study is important for the commercial use of C. officinalis and the cultivar Etude as food and medicinal plant, as well as for breeding in climatic conditions of Ukraine and analysis of hybridization features in the genus Cornus in general.


2020 ◽  
Vol 36 (3) ◽  
pp. 115-122
Author(s):  
Alejandra I. Domic ◽  
José M. Capriles ◽  
Gerardo R. Camilo

AbstractIn vascular plants, larger seeds are generally associated with higher germination potential, healthier seedlings and overall higher rates of survivorship. How this relationship holds or what other physiological tradeoffs evolved in plants adapted to high-altitude environments, such as the tropical and subtropical highland Polylepis tree, remain unclear. In this study, we evaluated the relationship between seed mass and seedling performance by testing the reserve effect, the metabolic effect, and the seedling-size effect hypotheses in Polylepis tomentella Weddell (Rosaceae). Since the relationship between fitness and seed size can often depend on maternal plant size, we additionally investigated the association between germination success, seedling performance (survival, relative growth rate (RGR) and height), and size of bearing-seed trees under controlled greenhouse conditions. Our results showed that heavier seeds are more likely to germinate, but we did not find evidence that could support the reserve effect, metabolic effect or seedling-size effect. As seedlings from larger and medium seeds exhibited comparatively similar RGR, survival percentages and final size, maternal plant size was positively associated with improved seed quality and seedling performance. These results demonstrate that seed mass and maternal size during early seedling establishment are critical for Polylepis persistence, demography and conservation.


2020 ◽  
Vol 10 (2) ◽  
pp. 152-161
Author(s):  
Elnaz Daneshzad ◽  
Maedeh Moradi ◽  
Mohammad R Maracy ◽  
Neil R. Brett ◽  
Nick Bellissimo ◽  
...  

Background: Studies are needed to further understand how different plant-based dietary patterns of mothers relate to infant growth. Thus, we investigated the association between maternal plant-based diets and infant growth in breastfed infants during the first 4 months of life. Methods: This cross-sectional study included 290 Iranian mothers and infants. Maternal dietary intake was assessed using a 168-question validated semi-quantitative food frequency questionnaire (FFQ). Three plant-based diet indices (PDIs) were then created to evaluate dietary intakes. Eighteen food groups were classified in three main categories by scoring method: wholeplant diet, healthy plant diet, and animal and unhealthy plant diet. Results: Participants in the top tertile of unhealthy PDI (uPDI) had a lower intake of potassium,phosphorus, zinc, magnesium, calcium, folate and vitamin C, B1, B2, and B3. The upper tertileof uPDI was associated with stunting at 4-month in infants (uPDI: odds ratio [OR] = 3.27, 95%CI= 1.32, 8.10). There were no significant associations between plant-based diet scores and anthropometric indices, including weight, weight status and head circumference (P > 0.05). Conclusion: In conclusion, higher adherence to uPDI may be associated with stuntingamong Iranian infants. Other PDIs were not associated with anthropometric measures. Future studies are needed to further understand the association between plant-based diets and infant growth.


2019 ◽  
Vol 150 (3) ◽  
pp. 512-517
Author(s):  
Maryanne T Perrin ◽  
Roman Pawlak ◽  
Lindsay H Allen ◽  
Daniela Hampel

ABSTRACT Background Choline is an essential nutrient for brain growth and other processes in the developing neonate. The impact of a maternal plant-based diet on the choline composition of breast milk is unknown. Objective We assessed the water-soluble choline content of milk from lactating women in the United States following 3 dietary patterns: vegan, vegetarian, and nonvegetarian. Methods We conducted a cross-sectional study of 74 healthy lactating women who provided a single breast-milk sample using a standardized collection protocol. Participants completed a food-frequency screener and were classified as follows: nonvegetarians (NONVEG) consumed meat; vegetarians (VEGT) consumed milk, dairy, and/or fish; and vegans (VEGAN) consumed animal products less than monthly. Primary outcomes measured were the concentration (in milligrams per liter) and distribution (percentage) of choline from the following water-soluble forms: free choline, phosphocholine (PCho), and glycerophosphocholine (GPC). Differences between diet groups were evaluated with ANOVA. Results There was a wide range in breast-milk total water-soluble choline (4–301 mg/L), with no significant difference (P > 0.05) by maternal diet pattern. There were differences in choline forms, with VEGAN having a greater mean ± SD concentration and distribution of choline derived from GPC (62.7 ± 25.3 mg/L) than VEGT (47.7 ± 21.2 mg/L) and NONVEG (42.4 ± 14.9 mg/L) (P = 0.0052). There was a lower mean ± SD percentage of choline from PCho (P = 0.0106) in VEGAN (32.5% ± 18.3%) than in VEGT (46.1% ± 18.3%) and NONVEG (44.8% ± 15.7%). Lactation stage and maternal BMI were significantly associated with some choline forms. Conclusions There was a wide range of water-soluble choline concentrations in the milk of healthy lactating women following vegan, vegetarian, and nonvegetarian diets, with no observed difference in total water-soluble choline concentration by maternal diet. This suggests that maternal plant-based diet by itself is not a risk factor for low breast-milk choline.


Sign in / Sign up

Export Citation Format

Share Document