Investigation of the Curve Number Method For Surface Runoff Estimation In Tropical Regions

2016 ◽  
Vol 52 (5) ◽  
pp. 1155-1169 ◽  
Author(s):  
Yihun Taddele Dile ◽  
Louise Karlberg ◽  
Raghavan Srinivasan ◽  
Johan Rockström
2021 ◽  
Author(s):  
Evgenia Koltsida ◽  
Nikos Mamassis ◽  
Andreas Kallioras

Abstract. SWAT (Soil and Water Assessment Tool) is a continuous time, semi-distributed river basin model that has been widely used to evaluate the effects of alternative management decisions on water resources. This study, demonstrates the application of SWAT model for streamflow simulation in an experimental basin with daily and hourly rainfall observations to investigate the influence of rainfall resolution on model performance. The model was calibrated for 2018 and validated for 2019 using the SUFI-2 algorithm in the SWAT-CUP program. Daily surface runoff was estimated using the Curve Number method and hourly surface runoff was estimated using the Green and Ampt Mein Larson method. A sensitivity analysis conducted in this study showed that the parameters related to groundwater flow were more sensitive for daily time intervals and channel routing parameters were more influential for hourly time intervals. Model performance statistics and graphical techniques indicated that the daily model performed better than the sub-daily model. The Curve Number method produced higher discharge peaks than the Green and Ampt Mein Larson method and estimated better the observed values. Overall, the general agreement between observations and simulations in both models suggests that the SWAT model appears to be a reliable tool to predict discharge over long periods of time.


2021 ◽  
Vol 20 (1) ◽  
pp. 74-80
Author(s):  
Love Kumar ◽  
Dhiraj Khalkho ◽  
V.K. Pandey ◽  
M.P. Tripathi ◽  
G.K. Nigam ◽  
...  

2016 ◽  
Vol 11 (1) ◽  
pp. 212-217 ◽  
Author(s):  
Dipesh Chavda ◽  
Jaydip Makwana ◽  
Hitesh Parmar ◽  
Arvind Kunapara ◽  
Girish Prajapati

Estimation of runoff in a watershed is a prerequisite for design of hydraulic structures, reservoir operation and for soil erosion control measures. Water resource planning and management is important and critical issue in arid and semi-arid regions. Runoff from a watershed affected by several geo-morphological parameters and for a particular watershed land use change can affect the runoff volume and runoff rate significantly. Several methods are investigated to estimate the surface runoff from a catchment but the Curve Number method is mostly used. Present study was undertaken to estimate surface runoff and water availability for two sites (Ozat-2 and Zanzesri) in the Ozat catchment situated in Junagadh, Gujarat, India using RS and GIS based curve number method. The Weight curve number for the ozat catchment is 73.00. The correlation coefficient between calculated and observed runoff was good for both catchments. In this study found that SCS-curve number method along with RS and GIS can be used successfully in semi-arid region to simulate rainfall runoff and to estimate total surface water.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 704
Author(s):  
Hussein Al-Ghobari ◽  
Ahmed Z. Dewidar

An increasing scarcity of water, as well as rapid global climate change, requires more effective water conservation alternatives. One promising alternative is rainwater harvesting (RWH). Nevertheless, the evaluation of RWH potential together with the selection of appropriate sites for RWH structures is significantly difficult for the water managers. This study deals with this difficulty by identifying RWH potential areas and sites for RWH structures utilizing geospatial and multi-criteria decision analysis (MCDA) techniques. The conventional data and remote sensing data were employed to set up needed thematic layers using ArcGIS software. The soil conservation service curve number (SCS-CN) method was used to determine surface runoff, centered on which yearly runoff potential map was produced in the ArcGIS environment. Thematic layers such as drainage density, slope, land use/cover, and runoff were allotted appropriate weights to produced RWH potential areas and zones appropriate for RWH structures maps of the study location. Results analysis revealed that the outcomes of the spatial allocation of yearly surface runoff depth ranging from 83 to 295 mm. Moreover, RWH potential areas results showed that the study areas can be categorized into three RWH potential areas: (a) low suitability, (b) medium suitability, and (c) high suitability. Nearly 40% of the watershed zone falls within medium and high suitability RWH potential areas. It is deduced that the integrated MCDA and geospatial techniques provide a valuable and formidable resource for the strategizing of RWH within the study zones.


Sign in / Sign up

Export Citation Format

Share Document